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A B S T R A C T

Small valley-bottom wetlands (< 5 km2) are often overlooked in conservation and restoration efforts due to the
difficulty to discriminate them in large regions. However due to their position in the landscape they are both
critical for ecosystem service provision as well as highly threatened. Therefore there is a need to detect and map
the extent of small valley-bottom wetlands to aid conservation and restoration efforts. We investigated five
research questions concerning small, valley-bottom palmiet wetlands in the Cape Floristic Region (CFR), South
Africa: (1) What is the best technique to detect palmiet wetlands?, (2) what is the best approach to map their
extent?, (3) how best to analyse their potential extent and historical changes?, (4) what is their current extent
and distribution and how has this changed historically?, and (5) what are the main drivers of this change? We
used three different approaches to answer the various questions: multispectral imagery (the Landsat series)
combined with Support Vector Machine classification, aerial photograph analysis with photographs from three
time-steps and predictive modelling of wetland habitat suitability (using the MaxEnt model). Our main findings
suggest that (1) multispectral classification using Landsat8 was best for palmiet wetland detection (76% accu-
racy), whereas (2) aerial photographs were the most useful in mapping extent. (3) Analysing changes in extent
over time was best achieved using aerial photography, due to their high resolution and long historical record in
South Africa (1940 compared to 1970 in the Landsat series). (4) South African palmiet wetlands are in decline,
having decreased by on average 31% in area since the 1940/50s (overall loss of 6.36 km2). Palmiet wetlands
have also become increasingly fragmented, with weighted wetland perimeter increasing by 29% over the same
period. (5) The major driver of this appears to be gully erosion triggered by land-use change. The wider im-
plication of these findings is that it is possible to detect small wetlands using freely available Landsat8 data
which could be useful to support local or regional conservation and restoration initiatives.

1. Introduction

Globally, wetlands are acknowledged to be valuable ecological in-
frastructure as they provide many essential ecosystem services to hu-
mans (Mitsch and Gossilink, 2000; Russi et al., 2013; Simonit and
Perrings, 2011). Due to this value, many wetlands have been exploited
or unsustainably used, resulting in estimated declines in global wetland
extent of between 64 – 71% in the 20th century alone (Gardner et al.,
2015). Countries that have ratified the Ramsar Convention (Ramsar,
1971) are obliged to implement planning to promote the wise use of
wetlands and to develop policies for management and conservation
(Gardner et al., 2015). Despite 169 countries signing this agreement,
there are still negative trends; wetlands are continuing to be lost or
degraded, and populations of wetland species are declining (Gardner

et al., 2015). Additionally, the Convention on Biological Diversity
(CBD, 1992) obliges contracting parties to rehabilitate and restore de-
graded ecosystems and manage biological resources which are im-
portant for the conservation of biological diversity (Glowka et al.,
1994). To effectively manage and conserve wetlands, nations require
up-to-date, accurate inventories of wetland occurrence and distribution
and means of monitoring this (Li and Chen, 2005; Rebelo et al., 2009).

Satellite remote sensing is a useful tool for wetland detection, both
in terms of distribution and extent. Certain wetland types (open in-
undated areas, bogs or fens) are frequently mapped using areas of in-
undation, focussing on the near infra-red part of the spectrum (Gala and
Melesse, 2012; Knight et al., 2009), or a combination of this and
chlorophyll indices, such as the normalised difference vegetation index
(NDVI) (Landmann et al., 2010). Other types of wetlands (permanent
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wetlands, marshes, swamps), where soil inundation is obscured by
dense wetland vegetation, are mapped using vegetation spectral sig-
natures (Kameyama et al., 2001; Thomas et al., 2015). No single sensor
is ideal, and there are always trade-offs to consider (temporal fre-
quency, spectral resolution, spatial resolution, cost). Digitization of
aerial photography is perhaps the most accurate method of mapping
wetland extent for small wetlands (Harvey and Hill, 2001); however the
trade-off is that this needs to be a targeted approach, targeting a specific
wetland once it has been located, and therefore is not a useful technique
for wetland detection. In addition to using imagery, predictive models
and Bayesian Networks have also been successful in mapping and de-
tecting wetlands at local to regional scales. The MaxEnt species dis-
tribution model, based on the principal of maximum entropy, has been
used to predict the occurrence of wetland communities with reasonable
success (Hunter et al., 2012). Wetland occurrence is determined by
complex interactions between geographic variables, such as altitude,
gradient, and geology which influence groundwater, soils and climatic
variables.

South Africa has ratified the Ramsar and Biological Diversity con-
ventions, however wetlands continue to be degraded with over 65%
threatened and half estimated to be destroyed (Nel and Driver, 2012).
One of the nation's greatest challenges in wetland conservation is the
lack of a comprehensive overview of the extent, diversity, distribution,
status and relative importance of its wetlands (Rountree et al., 2009).
The South African National Wetland Inventory (NWI), a national wet-
land classification system has been developed at a national scale and
contains a set of 791 wetland ecosystem types (Driver et al., 2012).
More recently, the National Freshwater Ecosystem Priority Areas
(NFEPA) project was developed using GIS applications (Nel et al.,
2011). However due to the large size of South Africa, 1.2 million km2,
both of these national-scale inventories are coarse, and result in many
important and threatened wetland systems being overlooked (van
Deventer et al., 2016). If restoration strategies in South Africa, such as
the current ‘Working for Wetlands programme” (van Wilgen et al.,
2012), are to succeed in prioritizing wetlands for restoration and con-
servation, it is essential to have a finer scale inventory of wetlands.
Wetland occurrence in South Africa has been determined at finer scales,
both for certain provinces (using modelling techniques such as Bayesian

belief networks (Hiestermann and Rivers-Moore, 2015)) and for in-
dividual cities (e.g. City of Cape Town; Holmes and Pugnalin, 2016),
but there are still important gaps.

We used three techniques to investigate the following five research
questions concerning South African palmiet wetlands: (1) What is the
best technique to detect palmiet wetlands?, (2) what is the best ap-
proach to map their extent?, (3) how best to analyse their potential
extent and historical changes?, (4) what is their current extent and
distribution and how has this changed historically?, and (5) what are
the main drivers of this change? Palmiet wetlands are a unique, typi-
cally small (< 5 km2) unchannelled valley-bottom wetland system oc-
curring throughout the Cape Floristic Region (CFR) of South Africa.
They get their name from the endemic wetland plant and ecosystem
engineer: palmiet (Prionium serratum). Palmiet wetlands are thought to
provide multiple ecosystem services to society, including flood at-
tenuation (Rebelo et al., 2015), water purification and carbon seques-
tration (Rebelo, 2017). They are typically underlain by peatbeds be-
tween 0.5 and 10 m deep (Job, 2014; Nsor, 2007), and this is the
ecological infrastructure that stores carbon, provides habitat for mi-
crobes which are thought to play a role in purifying water, and in
combination with palmiet vegetation, dissipates the force of flood-
waters (Rebelo, 2017). Despite the inherent value of these wetlands and
their threatened status, there is no comprehensive understanding of
where they remain, where they have been destroyed and what the main
drivers of change are. The results of the comparison of techniques may
be useful for other research at local or regional scales. The findings
specific to palmiet wetlands would support the setting of restoration
and conservation priorities within the Cape Floristic biodiversity hot-
spot.

2. Methods

2.1. Study region & wetlands

The CFR of South Africa is one of 35 global biodiversity hotspots
(Mittermeier et al., 2011; Myers et al., 2000) and covers 87,892 km2 at
the south-western tip of southern Africa (Cowling and Heijnis, 2001)
(Fig. 1). It is characterized by exceptionally high botanical diversity and

Fig. 1. The location of the Cape Floristic Region (green) within
South Africa (inset) and the coverage of the 10 Landsat8 scenes
selected for this study.
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endemism which is under threat (Myers et al., 2000; van Wyk and
Smith, 2001). The CFR has a mediterranean-type climate in the west
with varying degrees of summer drought and winter rainfall resulting
from the passage of cold fronts (Midgley et al., 2003). Further towards
the east there is more of a bimodal rainfall pattern. One of the greatest
threats to the biodiversity of the CFR is the rapid expansion of towns
and cities as well as the accompanying habitat transformation asso-
ciated with agriculture, plantations and alien plant invasions (Cowling
et al., 2003; Rebelo et al., 2011; Rebelo and Siegfried, 1992).

We used the three techniques: (i) multispectral remote sensing
techniques, (ii) maximum entropy distribution modelling and (iii)
aerial photograph analysis to answer the five research questions. We
first used Landsat imagery to determine whether multispectral remote-
sensing was a suitable technique to map small wetlands (both in terms
of detection, and accurately mapping extent) (research question 1 & 2)
currently (Landsat8) and historically (Landsat1-3, 5). We used the
output from the Landsat8 classification to select palmiet wetland frag-
ments to use in aerial photograph analysis to compare the accuracy and
effectiveness of this technique to the Landsat time-series analysis (re-
search question 3). It was apparent from the earliest aerial photographs
that some of the degradation had taken place prior to the first available
imagery. Therefore to understand what the original extent of palmiet
wetlands might have looked like, we attempted to model ‘potential
habitat distribution’ using MaxEnt species distribution modelling.

2.1.1. Technique 1: multispectral remote sensing
2.1.1.1. Image acquisition and classification. Palmiet wetlands are
sparsely distributed over the CFR, often forming long narrow bands
in the bottom of valleys, varying from 30–550 m in width, and typically
from a few hundred to a thousand metres in length. Therefore we
selected the Landsat series due to their large swath width and historical
archives. Ten Landsat8 images (level 1 T terrain corrected) covering the
study area were downloaded from the Earth Explorer website from
2014 (Fig. 1). We tried to select images from spring to early summer
(August–December 2014), as after the rainy winter season, the wetlands
would be at their highest water levels and be easier to detect in the
landscape (Ozesmi and Bauer, 2002). However in some cases this was
not possible, due to extensive cloud cover. Therefore the scenes ranged
in date from February to October. Images were converted from digital
numbers to reflectance (except for the thermal bands which are
preserved as temperature) in Grass7 using the i.toar-routine, and the
Fmasks procedure was applied separately for cloud detection.

Regions of interest (ROI) were collected from each of these ten
scenes to represent the main land-use/land-cover (LULC) classes
throughout the images and, most importantly, for pure pixels con-
taining palmiet wetlands. ROI were selected visually using the ROI tool
in ENVI, either in true colour mode (bands 2, 3, 4: blue, green, red), or
false colour (bands 4, 6, 7: red, SWIR1, SWIR2), or both. LULC classes
included agriculture (irrigated and dryland), towns/cities, sand, rock,
water, cloud, mountain fynbos vegetation, karoo vegetation, planta-
tions, riparian alien tree invasions, and native forest. All non-palmiet
ROI's were grouped together prior to classification. The classification
was performed by the Support Vector Machine (SVM) algorithm, which
has demonstrated its use in the analysis of remotely sensed images
(Asadzadeh and de Souza Filho, 2016). However, as the palmiet wet-
land class is very small, a presence-only variant was selected to identify
its occurrence. More specifically, the one-class extension by Schölkopf
et al. (2000) was used in the implementation of LibSVM (Chang and
Lin, 2011). We used the same techniques to map the recent historical
palmiet wetland occurrence at two points in time: 1970s and 1980s
using Landsat1-3 and Landsat5 respectively (Table 1). We transferred
ROI's from the 2014 scenes onto those from the 1970s and 1980s and
edited these ROI's to tailor them to the LULC of the time, using the
satellite images as a reference.

2.1.1.2. Classification validation and ground-truthing. For each

classification, 80% of the ground reference points (pixels of the ROI's
for palmiet wetlands) were set aside for training data. Of this 80%, 50%
were used for training and 50% for validation. In the validation step,
the available non-palmiet ROI's were included for parameter
estimation, in order to reduce over-classification. The remaining
independent 20% were used to test the accuracy of the classifications.
F1-scores were calculated from the test set and are given as a score from
0 to 1 depending on the accuracy of the classification (% true positives).
An additional accuracy score (%) was calculated for non-palmiet
classification (% true negatives). The final result of the Landsat8
classifications was also ground-truthed using two independent
techniques. The first was using visual analysis through Google Earth
Pro, which had a high enough resolution to allow the assessment of the
wetland classification results. Random GPS coordinates were generated
(321 in total) and each point on the classification was compared to
Google Earth imagery. The second method used independent data on
palmiet presence collected through the citizen science platform: iSPOT
(https://www.ispotnature.org/communities/southern-africa). In total
palmiet vegetation was recorded 55 times throughout the study
region by citizen scientists. These 55 locations were checked on the
imagery to determine whether the classifications had correctly
classified palmiet, and an accuracy score (%) was calculated. The
classifications from the 1980s and 1970s were not possible to ground-
truth, given that no data on wetland occurrence were found for these
time periods.

2.1.2. Technique 2: habitat suitability modelling
The purpose of using habitat suitability modelling was to construct a

probability map of the possible original occurrence and extent of pal-
miet wetlands within the CFR, before colonialists arrived in South
Africa in the 17th century, dramatically changing LULC in South Africa
(e.g. see Skead (2009)). We did this by only including input relating to
its natural distribution (e.g. geology, soil, climate) and excluding input
that would explain its decline (e.g. LULC, pollution). Modelling a
wetland community, rather than species, using MaxEnt, has been shown
to be possible (Hunter et al., 2012). Therefore we used the MaxEnt
species distribution model, which is based on the ecological niche
concept (Phillips et al., 2006). MaxEnt is a general-purpose machine
learning method based on the principal of maximum entropy (Phillips
et al., 2006). MaxEnt produces a results map showing the probability of
species occurrence, ranging from 0 to 1.

2.1.2.1. Input data and settings. Relevant model input variables were
selected and data obtained from various organizations such as national
government and research institutions (Appendix A). The output of the
most recent (2010) aerial photograph analysis (raster file; technique 3)
was converted to points (shapefile) in ArcMap and used as the input for
wetland presence in the MaxEnt model. Sampling bias was controlled
by inputting information on survey effort across the study region into
the model (Merow et al., 2013). Since no palmiet wetland absence data
exist, we used the non-palmiet regions of interest input from the
multispectral remote sensing analysis. We used random seeding and
set the number of replicates, from which the results could be averaged,
to 15. In addition we chose to withhold 25% of the data for testing the
performance of the model, using a sub-sampling approach. We set the
number of iterations to 5000, allowing the model enough time to
converge. All other MaxEnt settings were left at their default values.
The spatial resolution of the analysis is determined by that of the
coarsest data set (1.6×1.6 km), although all rasters were resampled to
46×46 m.

2.1.2.2. Model validation and assessment. MaxEnt has a number of
inbuilt cross-validation options where the presence locations are
divided into training and validation datasets (used for K-fold cross
validation). Goodness-of-fit statistics, or area under the receiver-
operating characteristic curve (AUC), is the most popular model
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evaluation for MaxEnt (Merow et al., 2013). Alternatively, binary
presence-absence predications can be generated from the model
output using thresholds and this can be ground-truthed using
independent data sets. We used AUC and the 10th percentile training
presence logistic threshold to define the minimum probability of
suitable habitat. Since no data exist on the historical extent of
palmiet wetlands, the distribution cannot be ground-truthed.
However the output was visually compared with current wetland
extent to assess whether the modelled results are feasible.

2.1.3. Technique 3: aerial photograph analysis
2.1.3.1. Image acquisition and digitization. Palmiet wetland fragments
were identified for further analysis using the results of the Landsat8
classification combined with expert knowledge. True palmiet wetlands
were identifiable as relatively larger areas of dense pixels, whereas
palmiet wetlands falsely identified by the algorithm tended to be made
up of single pixels, sparsely spread. Eight wetland fragments were
selected for further analysis. Aerial photographs from three time slices:
1940/50s, 1980s and 2010s were acquired from the Chief Directorate of
National Geo-spatial Information (Cape Town, South Africa) for these
eight sites. Wetland fragments range from about 2.75–13 km in size
(wetland length). Aerial photographs were selected from three time
steps (Table 1). The aerial photographs from 2010 were already
rectified and georeferenced. These photographs were used to rectify
and georeference the historical photographs in ArcMap. Wetland
vegetation in each of the aerial photographs was digitized, making
effort to consider the same wetland fragment in all three time slices for
each site. Alien trees, erosion and agriculture in the valley-bottoms
were excluded, but besides this no effort was made to distinguish
healthy (pristine) wetland vegetation from degraded vegetation, nor to
distinguish wetland vegetation types; as this would not have been
possible to discriminate in the historical imagery. Wetland area and
perimeter were calculated in ArcMap using the ‘calculate geometry’
tool, and the relative perimeter was calculated (perimeter/area).

2.2. Analysis & statistics

All resulting maps of historical and current palmiet wetland oc-
currence were collated in ArcMap and screened for reliability and ac-
curacy. We chose the most reliable of the three approaches to analyse
changes in wetland area and distribution over time. The statistical
difference in change of wetland area and perimeter was tested using
linear mixed models in R and an F-test with Kenward-Roger correction,
after testing for normality. To establish which years differed from each
other, a Tukey post hoc test was used. Where wetlands were predicted
to be present historically, but are no longer present, the LULC replacing
them were obtained from Google Earth Pro and recorded. These find-
ings were analyzed to determine the main drivers of palmiet wetland
decline within the CFR. The frequency with which these drivers affected
each wetland was recorded, and from this a percentage was calculated
to indicate the relative importance of each driver.

3. Results

3.1. Technique 1: landsat classification results

Landsat8 classification produced reasonable results for the current
occurrence of palmiet wetlands within the CFR of South Africa (Fig. 2,
Table 2). There was some slight over-classification, especially at higher
altitudes, where there are no palmiet wetlands present (Fig. 2). There
was also some over-classification within wetlands themselves as the
algorithm sometimes struggled to discriminate between palmiet wet-
land vegetation, and other wetland vegetation types/alien vegetation.
From the ground-truthed results using iSPOT records, a score of 63% for
true positives was obtained, whereas from the 321 randomly generated
points checked in Google Earth, the accuracy score was 100% for true
negatives. Using Landsat8 imagery to detect and map small wetland
fragments seems to be a feasible technique.

Overall for the historical imagery, Landsat5 and Landsat1-3 classi-
fication results were not as promising (Table 2, Fig. 2). The coarser
spatial (60×60 m) and spectral (4 bands) resolutions made the classi-
fication of small wetland fragments challenging. Palmiet wetlands were

Table 1
Specifications of the products used in this study for various time steps.

Product Decade Number of bands Resolution Swath Width/Area Scale

Landsat8 2010 11 30×30 m 185 km –
Landsat5 1980 4 60×60 m 185 km –
Landsat1–3 1970 4 60×60 m 185 km –
Aerial photographs 2010 – 0.5 m 6×5 km –

1980 – 2.6–4.7 m (mean 3.6 m) 7.5×7.5 km or 12.5×12.5 km 1:30 000 – 1:50 000
1940/50 – 1.9–2.9 m (mean 2.5 m) 5×5 km or 7×7 km 1:18 000 – 1:30 000

Table 2
Accuracy of classifications: F1-scores refer to the accuracy in terms of true positives (palmiet correctly classified) whereas % accuracy refers to the accuracy in terms of true negatives
(non-palmiet correctly classified). The numbers in bold are the names of the images.

Landsat8 2014 Landsat5 1983–1987 Landsat1-3 1972–1978

# Path Row F1-Score Accuracy (%) F1-Score Accuracy (%) F1-Score Accuracy (%)

1 175 84 115 0.60 53.00 131 0.42 77.02 335 0.57 46.38
2 175 83 291 0.82 75.32 131 0.64 58.82 313 0.67 64.71
3 175 82 291 0.83 60.38 289 0.60 50.00 260 0.32 50.00
4 174 84 236 0.71 63.24 218 0.40 68.75 298 0.40 43.90
5 174 83 268 0.54 52.00 330 0.64 54.55 312 0.73 66.67
6 173 84 245 0.74 73.23 115 0.85 79.57 347 0.64 54.05
7 173 83 277 0.75 42.31 115 0.30 69.56 347 0.73 65.22
8 172 84 174 0.86 75.00 204 0.31 61.76 070 0.53 63.33
9 172 83 174 0.88 76.67 321 0.66 55.26 274 0.71 58.97
10 171 84 279 0.84 76.19 314 0.73 58.70 15 0.33 65.00

mean 0.76 64.73 0.56 63.40 0.56 57.82
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still detectable; however there was significant over-classification,
especially for Landsat5 imagery (Fig. 2). Therefore the results of clas-
sifications from the 1980s and 1970s were not used in further analyses
to detect change in wetland extent over time. Landsat historical ima-
gery appears to have limitations for accurately mapping the extent of
small wetland fragments.

3.1.1. Spectral signatures
Spectral signatures can be useful in untangling the causes of over-

classification of satellite remote sensing imagery. In the case of
Landsat8 imagery, certain classes were more difficult to discriminate
than others (i.e. had similar spectral signatures). Spectral signatures for
palmiet were most similar to irrigated agriculture, plantations/alien
invasion, Afromontane Forest, Albany Thicket and some Fynbos types
(Fig. 3, Fig. 4). From the average spectra collected and displayed in
Fig. 4, it seems that the spectral signature for palmiet wetlands is most
similar to stands of dense trees, either alien (plantations/invasions) or
indigenous (Afromontane Forest, Albany Thicket) or irrigated agri-
culture. This may be due to the high vegetation biomass or high water-
use of these LULC types, or a combination of both, rendering them si-
milar to palmiet wetland spectra.

3.2. Technique 2: habitat suitability modelling

Overall the MaxEnt model successfully identified some fragments of
existing palmiet wetland patches as ‘suitable’ habitat (Fig. 5). It had an
area under the receiver-operating characteristic curve of 0.81 (0.5 is
considered no better than random, 1 is considered good model per-
formance). However it was not able to extrapolate this information to
where these wetlands may once have occurred (e.g. where they are
known to have been replaced by an impoundment or agriculture).
Overall this model –with the currently available spatial layers (input
data) - does not successfully predict the historical extent of small valley-
bottom wetland patches.

Ten variables were the most important in predicting palmiet wet-
land habitat suitability, accounting for 90% of the predictive con-
tribution (Table 3). However not all of these variables and thresholds
are the most sensible. For example, the threshold that the model set for

slopes that are suitable for palmiet wetlands was too high. The model
set the threshold at between 5° and 18° where we have found palmiet
wetlands not to occur above slopes of about 5°. This accounts for some
of the over-classification observed in Fig. 5. Secondly, one of the im-
portant variables is found to be ‘precipitation of the driest quarter’,
which clearly separates the western and eastern parts of the CFR, being
low in the west (9–80 mm) and high in the east (80–241 mm), resulting
in a spatial bias due to the two different climatic regions. However
palmiet wetlands occur in both regions, and therefore it is strange that
this was selected by the model to be important in predicting palmiet
wetland occurrence.

Fig. 2. Results of the Landsat classifications
for the 1970s, 1980s and 2010s from
Landsat1-3, Landsat5 and Landsat8 respec-
tively for four palmiet wetland sites in the
Cape Floristic Region (CFR) of South Africa.
For the location of these sites within the
CFR, see Fig. 5.

Fig. 3. Spectral signatures of the major land-use/land-cover classes within the Cape
Floristic Region, South Africa extracted from regions of interest taken from 2014 Landsat8
imagery. Two bands are plotted against each other: band4 (red) and band5 (NIR). The
easily distinguishable classes are indicated on the figure, but all classes are listed here:
palmiet wetlands, irrigated agriculture, plantations/alien invasion,
Afromontane Forest, bare ground, water, built up areas, Fynbos, Albany
Thicket.
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3.3. Technique 3: aerial photograph analysis

Eight remaining palmiet wetland fragments were identified in the
CFR from the Landsat8 classification results, and these were used in
aerial photograph analysis. This technique was found to be the most
accurate in examining historical changes in wetlands, yielding results
which were comparable from one time period to the next, unlike the
historical Landsat analysis. Wetland change is shown visually for four
wetland fragments in Fig. 6 (details in Table 4). In contrast the MaxEnt
modelling output is shown, giving an impression of the coarseness of
the results. Also shown is the classification of these wetland fragments
according to the South African National Freshwater Ecosystem Priority
Areas (NFEPA) project (Nel et al., 2011). In each case these wetlands
are miss-classified in NFEPA, either as ‘channelled’ valley-bottom
wetlands, or as floodplain wetlands. These wetlands are all un-
channelled valley-bottom wetlands, with the exception of the Citrusdal
wetland. This Citrusdal wetland has likely artificially been channelized
before the 1940s when extensive systems of canals were dug parallel to
the wetland system, and a municipal dam was built. The NFEPA clas-
sifications also do not recognise wetland degradation, or where the
wetland no longer exists due to agriculture (Fig. 6).

3.4. Wetland change analysis

Palmiet wetland extent within the CFR has significantly declined
over the past 60–70 years (F = 5.21, df = 14, p<0.05). Overall de-
cline in area is 31%; at some sites wetland area does not change at all
and in other sites it declines by over half over the last 60–70 years
(55%) (Table 4). Most of these significant changes took place between
the 1940/50s and the 1980s (t = 2.4, df = 7, p<0.05), though it is
clear from the earliest photographs that major changes to these systems
had already been made before the first aerial photographs were avail-
able (1940s). Wetland weighted perimeter (relative to the area of the
wetland) increased significantly by 29% over the last 60–70 years (F =
5.20, df = 14, p<0.05), indicating that remaining palmiet wetlands
are becoming increasingly fragmented (Appendix A, Table A2). Every

palmiet wetland experienced increased fragmentation, ranging from 5%
to 39%.

The major drivers of wetland change in South Africa can be divided
into two categories: those indirectly affecting wetland extent by altering
hydraulics and those directly affecting wetland extent by replacing
wetland surface area (Rebelo et al., 2015). Bisecting roads are one of
the most common drivers negatively impacting palmiet wetlands, af-
fecting each of the eight wetland fragments investigated (Table 5).
Roads cause knick-points in these wetland systems, often resulting in
erosion, which eventually drains the wetland (Job, 2014), see Plate A1.
Once this erosion begins, it is impossible for the system to recover
without active rehabilitation, which is costly. This wetland drainage
results in a shift in vegetation communities, often encouraging the re-
cruitment of alien vegetation. Other drivers impacting wetland hy-
draulics include water canals which drain palmiet wetlands, and dams:
either small farm dams, or large municipal ones. Examples of the
second type of driver include irrigated agriculture and alien plant in-
vasion. Sections of palmiet wetlands have been replaced by agriculture,
and others have become invaded by non-native plants, either trees (e.g.
Acacia mearnsii, Eucalypt sp., Pinus sp. or Quercus sp.), or weedy plants
such as Rubus sp.

4. Discussion

4.1. Comparison of techniques to map small wetlands

We found Landsat8 imagery combined with SVM classification to be
highly effective at detecting palmiet wetlands in a large region. This
result was refined using aerial photograph analysis, by selecting eight of
the largest remaining palmiet wetland fragments, and performing di-
gitization at high resolution to accurately map current wetland extent.
Historical wetland mapping using multispectral remote sensing was
more challenging. The results from the SVM classification of historical
Landsat imagery were unreliable, a result of differing rates of over-
classification per image and per time-step which rendered the outputs
incomparable over time. Therefore using the Landsat series to examine

LULC Class Photo Spectral Signature 
Google Earth 

(2012-2016) 
Landsat8 (2014) 

Landsat5
*

(1984-1986) 

Landsat1-3
*
 (1972-

1978) 

Palmiet valley-

bottom 

wetland 

(Kromme 

Wetland) 

Mountain seep 

wetland 

(Langkloof, 

Eastern Cape) 

Alien invasion 

(e.g. Black 

Wattle: Acacia 
mearnsii) 

Plantation (e.g. 

Pinus sp.), 

Tsitsikamma, 

Western Cape 

Fig. 4. Discriminating between major land-use/land-cover (LULC) classes in palmiet wetland classifications from the Cape Floristic Region, South Africa. All satellite imagery are
displayed as true colour unless the LULC is too difficult to discriminate; in which case it is displayed as false colour (*), where red is indicative of high vegetation biomass. Ten spectral
signatures are collected from one image (Fig. 1, path 171, row 84) and are given in red, contrasted with 3 reference spectra (averaged from hundreds of spectra): water, bare ground
and palmiet. Two sets of spectra are given for agriculture: representing two main different types (orchards and fodder crops).,.
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change of small wetlands over time was unsuccessful in this study.
Other studies have also found aerial photographs to deliver a superior
product relative to multispectral imagery (Harvey and Hill, 2001). This
is in contrast to studies using the Landsat series to classify larger wet-
land areas, which are often more successful (Han et al., 2015;
MacAlister and Mahaxay, 2009).

We therefore used historical aerial photograph digitization for the
eight palmiet wetland fragments to accurately examine change in
wetland extent over time –since the 1940s. However we realised that

some of the damage to these wetlands had been done before the first
aerial photographs had been taken (pre-1940s). To understand wetland
dynamics and to form restoration targets, it is essential to understand
original wetland extent, and their original hydrological classification:
whether these wetlands were originally channelled or unchannelled
valley-bottom wetlands (although see argument of Grenfell et al.
(2009). Therefore it was essential to have some information on where
these wetlands may once have occurred, and to have an idea of their
original extent. To that end we performed predictive modelling

Fig. 5. Predicted probability of palmiet wetland occurrence within the Cape Floristic Region, South Africa (scale: 0–1). This figure shows close-ups of five wetland fragments; the black
lines indicate the current extent of these wetlands. The colour scale shows probability of wetland occurrence, cut off at 0.48, the 10th percentile training presence logistic threshold.
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Fig. 4. (continued)

A.J. Rebelo et al. Remote Sensing Applications: Society and Environment 8 (2017) 212–223

218



(MaxEnt) using the input data from the aerial photograph analysis. We
found that this modelling technique was not optimal for mapping his-
torical extent of palmiet wetlands, probably due to the low resolution of
some of the predictors available. Overall, the best technique for small
wetland detection, extent mapping and analysing temporal changes
proved to be a combination of multispectral remote-sensing and aerial
photograph analysis.

4.2. Implications for management, rehabilitation and conservation

The outlook for palmiet wetlands in the CFR is not positive. Existing
wetlands have declined by on average 31% since the 1940's, although
we have little information on the original extent of these wetlands. Nel
and Driver (2012) estimate that over 50% of South African wetlands
have been lost. This is slightly lower than the global average of 64–71%
(Gardner et al., 2015). It is also important to note that the quality of
these valley-bottom palmiet wetlands has declined over the past 60–70
years, becoming increasingly fragmented and channelized. According

to the analysis of major drivers, this is largely due to roads bisecting and
destabilizing the alluvium of the wetlands, causing headcut erosion and
eventually channelization of these typically unchannelled systems. Si-
milar causes of wetland degradation, wagon tracks and roads, in the
Karoo have been deduced (Boardman, 2014). Hydraulic changes to
these wetland systems by erosion are by far the most severe type of
degradation and are difficult and expensive to rehabilitate (Grenfell
et al., 2009). By draining the wetlands, these hydraulic changes also
facilitate the invasion by alien species, often trees, which further per-
petuates the cycle of degradation. Agriculture either alongside the
wetland, or on the alluvium itself, poses another great threat to wetland
integrity.

In terms of implications for management, degradation caused by
roads or other infrastructure bisecting palmiet wetlands mostly took
place before the 1980s. In the South African case, it is unlikely that
more roads will be constructed through or over these wetlands.
However for other valley-bottom wetlands globally, it is recommended
that disturbance of the wetland should be avoided at all costs, and
where possible bridges should be constructed, with high clearance and
no culverts or obstructions beneath. Provision is made for protection of
wetlands in the case of road construction in South Africa in two main
ways: through compliance with section 24(7) of NEMA (environmental
impact assessment required) and through the National Water Act 36 of
1998 (NWA) which requires a water-use licence if the flow of water is
diverted. Perhaps of greater concern currently, is the management of
agriculture encroaching on or into palmiet wetlands, or of drainage
canals being dug for agriculture. These practises are still continuing at
present, and should be monitored and prevented, in accordance with
the National Environmental Management Act 107 of 1998 (NEMA), the
National Water Act and the Conservation of Agricultural Resources Act
(CARA).

One important observation that was made during the historical
mapping is that palmiet wetlands seem to be remarkably stable over
periods of up to 70 years, unless the alluvium is destabilized, in which
case headcut erosion takes place rapidly. In case 1 (Fig. 7), a road bi-
secting the top end of the palmiet wetland, the point at which a steep
mountain stream becomes unconfined and enters a broader valley
bottom, caused a knick-point, resulting in channel erosion. This channel

Table 3
Cumulative percentage contribution of environmental variables to the prediction of
palmiet wetland occurrence in the CFR, South Africa. Thresholds are based on cumulative
response curves.

Environmental variable Contribution (%) Thresholds

Groundwater depth (mamsl) 22.1 > 300mamsl (35%)
Altitude (DEM) 43.4 < 400 m (100%);< 100

(50%)
Mean diurnal temperature range

(mean of monthly)
60.4 > 11.5 °C (35%)

Groundwater recharge (mm/a) 68.4 50–150 mm (26–36%)
Precipitation of driest quarter

(mm)
75.9 < 80 mm (56%)

Slope (degrees) 80.3 −5–18° (18–36%)
Mean annual runoff (mm) 83.4 > 100 mm (36%)
Borehole yield (l/s) 86.2 > 8 l/s (36%)
Max temperature of warmest

month (°C)
88.7 24–36 °C (35%)

Min temperature of coldest
month (°C)

90.2 4–7 °C (20–45%)

Fig. 6. Comparison of aerial photograph
and MaxEnt model output to an existing
South African wetland product used for
management and conservation (NFEPA) for
four palmiet wetland sites in the Cape
Floristic Region of South Africa. Change in
wetland cover is shown by displaying the
aerial photograph analysis results for:
1940/50s, 1980s and 2010s. The
NFEPA Classification has five different ca-
tegories shown here: channelled valley-
bottom wetland, flat, floodplain wet-
land, seep, and unchannelled valley-
bottom wetland.
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is on average 10 m wide and 3–4 m deep. Between 2004 and 2014 the
channel had lengthened by 446.24 m, an average of 45 m per year.
According to historical imagery available on Google Earth Pro, the
change is not gradual, year-by-year, but rather as the result of extreme
flood events, which happen on average once a decade. In case 2, the
stability of palmiet wetland systems is demonstrated. This channel,
whether natural or man-made, has remained open in this palmiet
wetland for the past 60 years, demonstrating that once these systems
reach an equilibrium, they are highly stable over time. Similar ob-
servations were made in a geomorphological study of the Goukou
palmiet wetland system, where sections of the wetland were found to be
remarkably stable between 1941 and 1991 (Job, 2014). This has im-
portant management and rehabilitation implications, as it means that
once damage has occurred, causing a knick-point, it should be re-
habilitated before the next large 10-year floods occur, otherwise sub-
stantial wetland loss is risked. Therefore timing is critical in these re-
habilitation projects. Ultimately as these wetlands become channelized
and the alluvium and peat is washed away, valuable ecosystem services

are lost (Rebelo et al., 2015).
Lastly, it is apparent that palmiet wetlands are not adequately re-

presented in the South African National Freshwater Ecosystem Priority
Areas (NFEPA) Atlas. Many of these palmiet wetlands are misclassified,
and there is no information available on the condition of these wet-
lands. Many are degraded or no longer exist, and yet are indicated as
wetlands in the atlas. Similar results were found in a congruency as-
sessment between the South African National Wetland Map and two
sites which had wetlands mapped on 1:10 000 aerial photographs: the
Overberg Municipal District and the City of Cape Town (CoCT) Metro
(van Deventer et al., 2016). The data from small scale studies such as
this one, can be used to supplement coarser national-scale wetland in-
ventories, improving the knowledge of wetland distribution, type and
condition. This is essential for prioritizing wetland rehabilitation and
conservation. At least half of the eight wetlands which were chosen for
wetland change analysis are in a critical condition, threatened by
headcut erosion. If steps are not taken immediately to stop this erosion,
it is likely that these wetlands will be drained or lost in the next 50
years. Most of these palmiet wetlands are underlain by peatbeds, known
to have important water purification abilities (Rebelo, 2017). Ad-
ditionally many of these wetlands are located above dams, providing
municipal water to millions of South Africans. If these wetlands are lost
or become degraded, there is likely to be an impact on the water quality
of these important regional water resources.

4.3. Conclusion

Historical aerial photograph analysis showed that South African
palmiet wetlands are in decline, and due to drivers such as erosion,
agriculture and alien plant invasion, are becoming increasingly

Table 4
The change in palmiet wetland extent over three time-steps for eight palmiet wetland fragments within the CFR, South Africa. The primary catchment and drainage region (in brackets)
are given. A negative change indicates an increase in area and positive a decrease. Letters in the bottom row denote significance of differences for the total change.

Palmiet wetland extent (km2)

Location Catchment 1940/50 s 1980s 2010s Change (%)

Citrusdal Berg Catchment (G) 0.18 0.26 0.27 −0.09 (51%)
1.26 1.23 1.26 0.00 (0.2%)

Theewaterskloof Breede Catchment (H) 4.24 3.64 2.43 1.81 (43%)
2.21 2.14 2.00 0.21 (9%)

Duivenhoks 1.16 0.68 0.52 0.64 (55%)
Goukou 8.44 6.67 5.80 2.64 (31%)
George Tsitsikamma Catchment (K) 1.56 0.84 0.73 0.83 (53%)
Kromme 1.52 1.13 1.19 0.33 (22%)
Total 20.57 a 16.58 ab 14.21 b 6.36 (31%)

Table 5
Main drivers of palmiet wetland change within the CFR, South Africa. The
percentages indicate the relative importance of each driver in terms of the
frequency with which it is recorded in the study wetlands.

Drivers Contribution (%)

Roads bisecting wetland 28.6
Irrigated agriculture 25.0
Alien plant invasion 21.4
Dams 14.3
Water canals 10.7

Fig. 7. Wetland change over time: two in-
teresting cases in point, illustrated over four
time-steps for the last 61–68 years. The first
wetland is the upper Theewaterskloof wet-
land, and the second is the lower
Theewaterskloof wetland, above and below
the municipal dam respectively, in the Cape
Floristic Region, South Africa. The first case
shows the progression of a head-cut through
the wetland, and the second shows the per-
sistence of a channel. It is unknown whether
this is man-made or natural.
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degraded and fragmented. Structural wetland rehabilitation to stop the
progression of gully erosion is recommended prior to the next large
respective local flood events, to prevent substantial loss and high re-
habilitation costs. The comparison of three techniques to detect and
map extent of small wetlands demonstrated that a combination of
techniques yields the best results. We found classification of Landsat8
imagery to be the most successful technique for initial wetland detec-
tion, which can be refined using aerial photographs where greater ac-
curacy is needed. This addresses a major challenge in mapping small
wetlands at a landscape level.
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Appendix A

see Tables A1 and A2

Table A1
Friginal MaxEnt model input variables for consideration, their labels, units, data type, cell size, file type and source.

Variable type Variable Label Units Data Type Cell size Extent File Source

Climate Annual Mean Temperature bio1 °C*10 Continuous 0.8 km Global raster WorldClima

Mean Diurnal Range (Mean of monthly (max temp - min
temp))

bio2 °C*10 Continuous 0.8 km Global raster WorldClima

Isothermality (*100) bio3 °C*10 Continuous 0.8 km Global raster WorldClima

Temperature Seasonality (stdev*100) bio4 °C*10 Continuous 0.8 km Global raster WorldClima

Max Temp. of Warmest Month bio5 °C*10 Continuous 0.8 km Global raster WorldClima

Min Temp. of Coldest Month bio6 °C*10 Continuous 0.8 km Global raster WorldClima

Temperature Annual Range bio7 °C*10 Continuous 0.8 km Global raster WorldClima

Mean Temp of Wettest Quarter bio8 °C*10 Continuous 0.8 km Global raster WorldClima

Mean Temp of Driest Quarter bio9 °C*10 Continuous 0.8 km Global raster WorldClima

Mean Temp of Warmest Quarter bio10 °C*10 Continuous 0.8 km Global raster WorldClima

Mean Temp of Coldest Quarter bio11 °C*10 Continuous 0.8 km Global raster WorldClima

Hydrology Annual Precipitation bio12 mm Continuous 0.8 km Global raster WorldClima

Precipitation of Wettest Month bio13 mm Continuous 0.8 km Global raster WorldClima

Precipitation of Driest Month bio14 mm Continuous 0.8 km Global raster WorldClima

Precipitation Seasonality (Coefficient of Variation) bio15 mm Continuous 0.8 km Global raster WorldClima

Precipitation of Wettest Quarter bio16 mm Continuous 0.8 km Global raster WorldClima

Precipitation of Driest Quarter bio17 mm Continuous 0.8 km Global raster WorldClima

Precipitation of Warmest Quarter bio18 mm Continuous 0.8 km Global raster WorldClima

Precipitation of Coldest Quarter bio19 mm Continuous 0.8 km Global raster WorldClima

Mean annual runoff bio20 mm Continuous 1.6 km RSA raster SWSA
Groundwater Groundwater recharge bio21 mm/a Continuous 0.8 km RSA raster GR2, GEOSS, SARVA

Groundwater electrical conductivity bio22 mS/m Continuous 46 m RSA raster GR2, GEOSS, SARVA
Borehole yield bio23 l/s Continuous 46 m RSA raster GR2, GEOSS, SARVA
Depth to groundwater bio24 (mamsl) Continuous 0.8 km RSA raster GR2, GEOSS, SARVA

Geology & Soils Geology bio25 – Categorical 0.5 km RSA raster WR90
Soils bio26 – Categorical 0.5 km RSA raster WR90

Digital elevation model derived Altitude (dem) bio29 m amsl Continuous 46 m CFR raster 90 m SRTM DEM
Slope bio30 Degrees Continuous 46 m CFR raster 90 m SRTM DEM
Aspect bio31 Degrees Continuous 46 m CFR raster 90 m SRTM DEM
Flow accumulation bio32 – Continuous 46 m CFR raster 90 m SRTM DEM
Flow direction bio33 Degrees Categorical 46 m CFR raster 90 m SRTM DEM

Biotic Palmiet wetland occurrence data Presence point
Background File Presence & Absence point

a Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology
25: 1965–1978.

Table A2
The change in palmiet wetland weighted perimeter (km) over three time-steps for eight palmiet wetland fragments within the CFR, South Africa. The primary catchment and drainage
region (in brackets) are given. All wetlands show an increase in weighted perimeter (negative change). Letters denote significance of differences of the totals.

Wetland Location Catchment 1940/50's 1980's 2010's Change (%)

Citrusdal Berg Catchment (G) 48.51 46.27 78.78 −30.27 (38%)
33.58 39.26 37.98 −4.40 (11%)

Theewaterskloof Breede Catchment (H) 9.81 11.73 14.86 −5.05 (34%)
17.45 16.07 28.73 −11.28 (39%)

Duivenhoks 45.33 44.19 68.21 −22.87 (34%)
Goukou 7.54 9.74 9.88 −2.35 (24%)
George Tsitsikamma Catchment (K) 27.59 32.79 34.72 −7.13 (21%)
Kromme 11.41 14.92 12.10 −0.70 (5%)
Total 201.22 a 214.96 a 285.26 b −84.04(29%)
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see Plate A1
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