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A B S T R A C T

Wetlands have been determined as one of the most valuable ecosystems on Earth and are currently being lost at
alarming rates. Large-scale monitoring of wetlands is of high importance, but also challenging. The Sentinel-1
and -2 satellite missions for the first time provide radar and optical data at high spatial and temporal detail, and
with this a unique opportunity for more accurate wetland mapping from space arises. Recent studies already
used Sentinel-1 and -2 data to map specific wetland types or characteristics, but for comprehensive wetland
characterisations the potential of the data has not been researched yet. The aim of our research was to study the
use of the high-resolution and temporally dense Sentinel-1 and -2 data for wetland mapping in multiple levels of
characterisation. The use of the data was assessed by applying Random Forests for multiple classification levels
including general wetland delineation, wetland vegetation types and surface water dynamics. The results for the
St. Lucia wetlands in South Africa showed that combining Sentinel-1 and -2 led to significantly higher classi-
fication accuracies than for using the systems separately. Accuracies were relatively poor for classifications in
high-vegetated wetlands, as subcanopy flooding could not be detected with Sentinel-1’s C-band sensors oper-
ating in VV/VH mode. When excluding high-vegetated areas, overall accuracies were reached of 88.5% for
general wetland delineation, 90.7% for mapping wetland vegetation types and 87.1% for mapping surface water
dynamics. Sentinel-2 was particularly of value for general wetland delineation, while Sentinel-1 showed more
value for mapping wetland vegetation types. Overlaid maps of all classification levels obtained overall accuracies
of 69.1% and 76.4% for classifying ten and seven wetland classes respectively.

1. Introduction

During the last decades, wetlands have been determined as one of
the most valuable ecosystems on Earth for both humanity and nature. It
is assumed that their functions provide critical support for at least 7 of
the 17 main Sustainable Development Goals as defined by the United
Nations (Ramsar Convention, 2016). Depending on the wetland type,
some important qualities of wetlands can be water storage and pur-
ification, shoreline protection, processing of carbon and other nutrients,
food security and the support of a large biodiversity in plants and an-
imals (Millennium Ecosystem Assessment, 2005; Ramsar Convention,
2016). Despite their importance, wetlands are currently being lost at a
rate faster than any other ecosystem, mainly due to human activity
(Millennium Ecosystem Assessment, 2005). To prevent further loss and
implement and evaluate policy for preservation, large-scale monitoring
and characterisation of different wetland types is of high importance.

Satellite-based remote sensing has been a widely adopted method

for land cover mapping and monitoring in general, using both radar and
optical data. However, accurately mapping wetlands is a challenging
task when using satellite data (Gallant, 2015). Wetlands are usually not
unified by a common land cover type or vegetation type, but only share
the characteristic ‘presence of water’ either at the surface, below ve-
getation canopy or in the soil, which makes them difficult to delineate
based on spectral or backscattering information (Gallant, 2015;
Henderson and Lewis, 2008). Furthermore, such information may
change during time due to the dynamics in flooding levels.

The capacities of most satellite sensors to cope with these wetland
complexities are often insufficient. Although detecting large open wa-
terbodies from space is usually easy, it gets challenging when flooding
is present under a forest’s canopy, when areas are surveyed that ex-
perience periods of persistent cloud-cover or when small or narrow
wetlands need to be identified (Ozesmi and Bauer, 2002; Rosenqvist
et al., 2007). The resolution of most satellite images is often too coarse
for accurate detection. Satellites also need a short revisit time in order
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to accurately detect flooding.
Another difficulty for large-scale wetland monitoring and char-

acterisation is the lack of uniform and global wetland definitions
(Amler et al., 2015) and comprehensive wetland classification schemes
(Mahdavi et al., 2018). As a result, past studies have often narrowed
down to specific aspects, such as a focus on characterising a certain
wetland type (Rosenqvist et al., 2007), or on classifying a specific
wetland characteristic (Semeniuk and Semeniuk, 1997). As a guideline
for more comprehensive and generically applicable wetland classifica-
tions, two key characteristics are determined: wetland vegetation types
and surface water dynamics (Keddy, 2010; Mitsch and Gosselink, 2015;
Tiner, 1999).

Current developments within the Copernicus programme of the
European Space Agency give a unique opportunity for more accurate
wetland mapping from space, with its free access to high spatial and
temporal resolution Sentinel-1 and Sentinel-2 data. The Sentinel-1 sa-
tellites carry a C-band (∼5.5 cm wavelength) Synthetic Aperture Radar
system, acquiring data in single- and dual-polarimetric modes with a
10-metre resolution (Torres et al., 2012). Radar remote sensing has
proven to be a valuable mean for wetland mapping due to several ad-
vantages, namely weather- and daylight independence, sensitivity to
water and moisture, and its ability to detect subcanopy water bodies
(Henderson and Lewis, 2008). The Sentinel-2 satellites are equipped
with a multispectral sensor, providing optical data in resolutions of 10-,
20- and 60 metres in the visible, near-infrared (NIR) and short-wave
infrared (SWIR) portions of the electromagnetic spectrum (Drusch
et al., 2012). Although optical remote sensing has limitations for wet-
land mapping when compared to radar, because clear-weather condi-
tions and daylight are needed and subcanopy water body detection is
not possible, optical data has proved its use as a complement besides
radar data (Bourgeau-Chavez et al., 2009; Ozesmi and Bauer, 2002). As
both these Sentinel missions comprise two polar-orbiting satellites and
acquire images with relatively wide swaths, their revisit times – re-
spectively five and six days for Sentinel-1 and -2 at the equator – are
relatively high.

Several studies have already been done for wetland mapping and
characterisation with the use of newly available Sentinel-1 and -2 data.
Single-date wetland characterisations using Sentinel-2 (Araya-López
et al., 2018; Bhatnagar et al., 2018; Kaplan and Avdan, 2017) and the
combination of Sentinel-1 and -2 (Chatziantoniou et al., 2017; Kaplan
and Avdan, 2018a; Whyte et al., 2018) already revealed the potential of
the high spatial resolution of the data. Several attempts have also been
done with multitemporal use of Sentinel-1 (Cazals et al., 2016; Huang
et al., 2017; Kaplan and Avdan, 2018b; Mleczko and Mróz, 2018; Mróz
et al., 2016; Muro et al., 2016; Tian et al., 2017; Tsyganskaya et al.,
2018; Xing et al., 2018) and Sentinel-2 (Ludwig et al., 2019). Here, the
value of temporally dense Sentinel-1 data was especially proved for
accurately characterising surface water dynamics and flood frequencies
in specific types of wetlands. Besides, these studies revealed a moderate
potential for using Sentinel-1 for the detection of flooding in vegetated
areas, which could not be done with optical data. The combination of
Sentinel-1 and -2 data in multitemporal analyses has also been applied,
although these studies have been limited to general wetland delineation
(Hird et al., 2017) or used a non-globally transferable approach
(Mahdianpari et al., 2018).

Most of these recent studies have looked at many wetland char-
acteristics separately but did not investigate the potential of combining
the temporally dense and high-resolution images of both Sentinel-1 and
-2 for comprehensive wetland characterisations. As wetlands come in
many different forms and can be characterised in different ways, it is
necessary to consider characterisation methods that serve the needs of
multiple users interested in different aspects of wetlands. It has been
agreed that hierarchical and flexible wetland classification standards
are preferred for future global wetland datasets (Hu et al., 2017).
Current global land cover products such as the recently launched
Copernicus Global Land Service (2019), which uses the ISO-certified

United Nations Land Cover Classification System (Di Gregorio, 2005),
have already focused on serving the needs of different user commu-
nities, but mapping wetland characteristics has remained limited here.
In this broader context of large-scale mapping, there is a need to study
the usability of Sentinel-1 and -2 for comprehensive wetland char-
acterisations.

Here, we present a study on the use of the high-resolution and
temporally dense Sentinel-1 and -2 data for wetland mapping within
multiple levels of characterisation. We first designed a wetland classi-
fication scheme considering three key classification levels: general
wetland delineation, wetland vegetation types and surface water dy-
namics. Then, we applied Random Forest classifications using several
temporal metrics obtained from two years of satellite imagery and
present results for the St. Lucia wetlands, South-Africa. We compared
the classification accuracies for both satellite systems separately and
combined to assess the potential of the data for applications in large-
scale wetland monitoring.

2. Materials

2.1. Study area

The St. Lucia wetlands (also known as the iSimangaliso wetlands),
located at the eastern shore of South Africa (Fig. 1), were used as a
study area. The St. Lucia wetland system is a UNESCO World Heritage
site and is an official Ramsar site. Being 1400 km² in size, it comprises
the largest estuarine wetland system in Southern Africa (Perissinotto
et al., 2013), where four large rivers enter the main water body of Lake
St. Lucia. The area has a sub-tropical climate and annual precipitation

Fig. 1. Overview of the study area (land cover data source: GeoTerraImage,
2015).
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varies from 1200 to 1300 mm (Bassa et al., 2016). The St. Lucia wet-
lands are characterised by a high diversity of ecosystems, including
marine, inland lake, estuarine, forested dunes, mangrove, and coastal
and swamp forest ecosystems (Adam and Mutanga, 2009). The area is
also highly dynamic in terms of flooding levels. For these reasons, it was
determined as a suitable study area for this research.

The St. Lucia wetlands were subject to severe droughts in 2015 and
2016 (iSimangaliso Wetland Park Authority, 2017). Therefore, more
stable years were chosen to be used as a study period, namely from
October 2016 until October 2018. This two-year period covers two
cycles of wet seasons (usually from January – March) and dry seasons
(usually from May – September), starting and ending in the transition
between these extremes.

2.2. Data

Sentinel-1 and -2 satellite images covering the period from October
2016 to October 2018 were sourced from the cloud-based geospatial
processing platform Google Earth Engine (GEE) (Gorelick et al., 2017).
The Sentinel-1 data provided within GEE is Ground Range Detected,
acquired in dual-polarimetric (VV/VH) Inferometric Wide Swath mode
and pre-processed as a Level-1 data product. Within the study area and
time period, a total of 65 Sentinel-1A images were selected (com-
plemented with several additional images to cover small areas on the
northern edge of the study area) with a 12-day revisit time. Sentinel-2
data is provided in GEE as a Level-1C product representing Top of At-
mosphere reflectance. Only images with a cloud-cover less than 40%
were selected, resulting in a time series of 286 Sentinel-2 images from
tiles T36JVP and T36JVQ.

3. Methods

A full overview of the methodological flow chart can be found in
Fig. 2 and is discussed in detail in the following subsections. First, pre-
processing of the Sentinel-1 and -2 images was done (Section 3.1). Five
temporal metrics were calculated from a set of relevant variables. Then,
several Random Forest classifications (Breiman, 2001) were done using
training points sampled from the study area (Section 3.2). Finally, all

classifications were validated with an independent validation dataset
(Section 3.3).

3.1. Data pre-processing

Within GEE, Sentinel-1 images are pre-processed into an analysis-
ready format using border noise removal, thermal noise removal,
radiometric calibration and orthorectification (Google, 2018a). Further
pre-processing included the correction of radiometric distortions along
terrain slopes (Hoekman and Reiche, 2015) using the 30-metre re-
solution digital elevation model from the Shuttle Radar Topography
Mission (Farr et al., 2007) and the removal of speckle noise using the
Extended Lee Sigma Filter with a window size of 7 × 7 pixels (Lee et al.,
2015).

The Sentinel-2 images were further pre-processed within GEE to
remove cloud- and cirrus-cover, using the provided QA-bands.
Additional masking was done by using threshold values for Band 2 (for
additional removal of dense clouds) and Band 10 (for additional re-
moval of cirrus clouds). In order to obtain a cloud-free time series, eight
quarterly median composites were produced over the two-year time
period, of which the first (October, November and December 2016) had
to be removed due to persistent cloud-cover during this quarter.

From each image within the time series of Sentinel-1 and -2, re-
spectively three and two variables were obtained, as described in
Table 1. From these variables, several temporal metrics – the mean,
median, maximum, minimum and standard deviation – were calculated
within GEE over the entire time period. A stacked GeoTiff image was
exported with these 25 temporal metrics stored as separate bands.

3.2. Classification

3.2.1. Multi-level classification scheme
A multi-level classification scheme was designed based on three

levels (Fig. 3). One level for general wetland delineation and two
subsequent levels for classifying the most important wetland char-
acteristics as determined by Keddy (2010), Mitsch and Gosselink (2015)
and Tiner (1999): wetland vegetation types and surface water dy-
namics.

Fig. 2. Overview of the methodology used in this study (for abbreviations of temporal metrics, see Table 1).
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For mapping wetlands in highly vegetated areas, the observation of
double-bounce scattering during flooding is needed, which requires a
certain level of vegetation penetration of a radar sensor. In high-vege-
tated wetlands such as mangrove- or swamp forests, this is best
achieved with high-wavelength L- or P-band sensors and HH mode,
although varying results have also been achieved with C-band and VV
mode (Wang et al., 1995). For this study it was expected that the C-
band sensors, operating in VV/VH mode, aboard the Sentinel-1 sa-
tellites had only moderate capabilities to map high-vegetated wetlands,
and therefore two different sets of classifications were done: one in-
cluding high-vegetated wetlands (+HV) and one excluding high-vege-
tated wetlands (-HV), considering in total ten and seven wetland classes
respectively (Fig. 3). Both classification sets were done using Sentinel-1
only (S1), Sentinel-2 only (S2) and the combination of Sentinel-1 and -2
(S1S2).

In Level 1 upland comprises all terrestrial land cover types (e.g.
forests, grasslands, urban areas, agricultural land, bare soil) and per-
manent water comprises all areas that are covered with water at least
80% of time. Wetlands are all areas in between these definitions of
upland and permanent water. The used class definitions for Level 2 and
Level 3 are described in Table 2. To delineate the used vegetation
classes, thresholds were adopted from the National Vegetation Classi-
fication Standard (Federal Geographic Data Committee, 1997). Ex-
amples of each wetland class within the study area displayed in high-
resolution aerial images can be found in Fig. 4.

3.2.2. Training data
Several global, regional and local data products were used as a re-

ference to acquire training data for the defined wetland classes
(Table 3). Only areas where multiple sources pointed out the occur-
rence of a wetland area, a certain wetland vegetation class and a certain
type of surface water dynamics were appointed as a suitable training
sample. Within these areas, the temporal metrics were sampled with
400 random points per class in Level 1 and 200 random points per class
in Level 2 and Level 3.

3.2.3. Random Forest classification
All classifications were done within R (R Core Team, 2018) using

Random Forests, a non-parametric supervised machine learning algo-
rithm (Breiman, 2001). Random Forests have proven their use for
classifications with the large amounts of data in satellite images, mainly
because they can handle the large differentiation within land cover
classes and noise data can be neutralised (Rodriguez-Galiano et al.,
2012).

The temporal metrics derived from the sample points were used as
input variables for the Random Forests. The number of trees in each
Random Forest classification was set to 128, which is determined to be
an optimal number in the consideration between accuracy and pro-
cessing speed (Oshiro et al., 2012). The minimum node size was set to 5
to limit the tree depth. To evaluate the importance of the individual
metrics, their Mean Decrease in Accuracy (MDA) and Mean Decrease in
Gini (MDG) were computed for each classification.

Table 1
Overview of Sentinel-1 and -2 variables used for this study.

Satellite Variable Description Equation

Sentinel-1 VV Backscattering value (γ°flat) for vertically polarised transmit and vertically polarised receive. NA
VH Backscattering value (γ°flat) for vertically polarised transmit and horizontally polarised receive. NA
VVrVH Ratio to indicate the VV backscattering relative to the VH backscattering. =VVrVH VV

VH
Sentinel-2 NDVI Normalised Difference Vegetation Index: indicates the occurrence of vegetation based on the normalised difference in NIR (Band

8) and red (Band 4) reflectance (Kriegler et al., 1969).
= +NDVI NIR Red

NIR Red

MNDWI Modified Normalised Difference Water Index: indicates the occurrence of water bodies based on the normalised difference in
green (Band 3) and SWIR (Band 11) reflectance (Xu, 2006)

= +MNDWI Green SWIR
Green SWIR

Fig. 3. Multi-level wetland classification scheme designed for this study.
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The results in the Level 1 classification were post-classified by re-
moving all isolated pixel clumps (containing 3 pixels or less in eight
directions) and replacing them by the majority pixel value of its direct
neighbours in a 3 × 3 window. The post-classified outputs from Level 1
were used as inputs for the Level 2 and Level 3 classifications, where
upland and permanent water were masked out. The non-masked areas –
the wetlands – were then further classified for their vegetation types
(Level 2) and surface water dynamics (Level 3). The output maps from
all levels were overlaid, in order to obtain final maps considering all

combinations of wetland classes.

3.3. Validation

For validation data collection, the overlaid classification output that
included all ten wetland classes (+HV) and had the lowest out-of-bag
error was used as a stratification. For each class represented in the
stratification, 50 sample points were collected per stratum. All valida-
tion points were visually assessed and appointed to a class in each

Table 2
Definitions of the considered classes for wetland characterisations in Level 2 and Level 3.

Level Class Description Thresholds

Level 2 (wetland vegetation types) Non-vegetated Wetlands with no or sparse vegetation, such as tidal flats. < 10% vegetation cover.
Low-vegetated
(herbaceous)

Wetlands such as low-vegetated marshes, with herbaceous vegetation
without significant woody tissue.

< 0.5 metre in height.
< 25% shrub- or forested cover.

Medium-vegetated
(shrubby)

Wetlands such as higher-vegetated marshes, with shrubby vegetation or a
bushy appearance.

> 0.5 metre in height.
> 25% shrubby cover.

High-vegetated
(forested)

Wetlands such as swamp- or mangrove forests, covered by trees with a
single main stem and a definite crown.

> 5 metre in height.
> 25% forested cover.

Level 3 (surface water dynamics) Permanently moist Wetlands that have a constant occurrence of low amounts of water, but do
not experience severe flooding.

Flooded: < 20% of time.

Temporarily flooded Wetlands that are subject to severe flooding with high amounts of water. Flooded: > 20% of time and < 80%
of time.

Permanently flooded Vegetated wetlands that are constantly or nearly constantly flooded with
high amounts of water.

Flooded: > 80% of time.
> 10% vegetation cover.

Fig. 4. Aerial images of examples of wetland classes. Images in the class ‘temporarily flooded’ were taken during a flood event. Brownish colours indicate the
occurrence of water (Google, 2018b).
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classification level. The reference data sources as described in Table 3
were consulted for this procedure. After the production of this valida-
tion dataset, confusion matrices were generated for all classifications
and the overall accuracy (OA), producer’s accuracy (PA) and user’s
accuracy (UA) were calculated.

4. Results

Among the +HV classifications, the lowest out-of-bag errors were
observed for the S1S2 classifications. Therefore, the overlaid output
from these classifications was used as stratification to create the vali-
dation dataset (Fig. 6). Accuracy overviews of all level-based classifi-
cations and the overlaid outputs can be found in Tables 4 and 5 re-
spectively. Fig. 5 shows the relative importance of the used temporal
metrics per classification. Fig. 7 shows the full output of the most

accurate classification (S1S2-HV) and a detailed comparison with the
other classification outputs.

The OAs for classifications in Level 1 (general wetland delineation)
ranged from 73.7%–88.5% (Table 4). The OA of S2+HV (80.2%) was
relatively high compared with the OA of S1+HV (73.7%). S1S2+HV

showed an improvement of the OA to 84.3%. In terms of specific
classes, wetland was classified with relatively high accuracies, while
accuracies for upland were relatively low. These classes showed a high
confusion throughout all classifications especially in high-vegetated
areas. The exclusion of high-vegetated wetlands led to relatively higher
OAs, leading to 88.5% for S1S2-HV. Especially the accuracies for upland
improved. A high confusion was also observed in both Sentinel-1
classifications for permanent water and wetland, especially in shallow
water areas, where permanent water was overestimated. The standard
deviations for MNDWI and VV as well as the maximum NDVI showed to

Table 3
Overview of the used reference data. The classification level for which each dataset was consulted is stated under ‘Level’.

Dataset Description Author/reference Level

Global scale
Global Surface Water Dataset 30-metre resolution map of global dynamics in surface water from

1984–2015.
Pekel et al. (2016) 1, 3

Google Earth images High-resolution global composition of aerial- and satellite images in different
scales and from different dates.

Google (2018b) 1, 2, 3

Microsoft Bing Maps images High-resolution global composition of aerial- and satellite images in different
scales.

Microsoft Bing Maps (2018) 1, 2

PALSAR-2 Global 25 m Resolution Mosaic 25-metre resolution HH and HV L-band radar image from the ALOS PALSAR-2
satellite sensor, acquired in 2017.

Shimada et al. (2014) 1, 2

Planet Explorer satellite images 3-metre resolution global composition of multitemporal satellite images. Planet (2018) 1, 3
Shuttle Radar Topography Mission 30-metre resolution global digital elevation model. Farr et al. (2007) 1
Tropical & Subtropical Wetland Distribution 231-metre resolution classification of wetland types in tropical and sub-

tropical regions.
Gumbricht et al. (2017) 1, 2

Regional scale
KwaZulu-Natal Land Cover 20-metre resolution land cover classification of the KwaZulu-Natal region in

South-Africa.
Ezemvelo KZN Wildlife (2011) 1

NFEPA Wetlands Vector map with classifications of wetland types in South Africa. Nel et al. (2011) 1, 2
NFEPA Wetland Vegetation Vector map with classifications of wetland vegetation types in South Africa. Nel et al. (2011) 2
South African aerial photography 0.5-metre resolution aerial photography of South Africa. National Geospatial Information

(2018)
1, 2

South African Land Cover Dataset 30-metre resolution land cover classification of South Africa GeoTerraImage (2015) 1, 2
Vegetation Map of South Africa, Lesotho and

Swaziland
Vector map with classifications of general vegetation types in South Africa. Mucina et al. (2006) 2

Local scale
Local study Land cover classification of the Mfabeni mire site within the St. Lucia

wetlands.
Clulow et al. (2013) 1, 2

Local study Vegetation type classification in the surroundings of the St. Lucia village. Lück-Vogel et al. (2016) 1, 2
Local study Land cover classification in the entire area of the St. Lucia wetlands. Maseko et al. (2017) 1
Local study Land cover classification in the entire area of the St. Lucia wetlands. Whyte et al. (2018) 1, 2

Table 4
Overview of the accuracies (%) of the classifications in each level.

S1+HV S2+HV S1S2+HV S1-HV S2-HV S1S2-HV

Level 1 OA: 73.7 OA: 80.2 OA: 84.3 OA: 80.3 OA: 85.8 OA: 88.5
PA UA PA UA PA UA PA UA PA UA PA UA

Permanent water 94.2 62.0 88.5 93.9 88.5 88.5 92.3 63.2 90.4 94.0 94.2 75.4
Upland 57.3 49.6 66.1 54.7 44.4 80.9 79.0 69.5 84.7 69.5 82.3 85.0
Wetland 75.9 85.2 83.3 88.0 95.5 84.4 78.9 89.9 85.5 92.3 89.9 92.4
Level 2 OA: 83.8 OA: 77.0 OA: 90.9 OA: 87.6 OA: 79.5 OA: 90.7

PA UA PA UA PA UA PA UA PA UA PA UA
Non-vegetated 100.0 75.0 95.6 93.5 100.0 100.0 100.0 76.9 95.6 95.6 100.0 100.0
Low-vegetated 84.3 92.9 70.5 75.4 93.3 92.7 84.7 91.7 73.2 79.5 90.7 90.7
Medium-vegetated 80.0 78.6 67.5 71.4 85.0 86.9 89.2 85.1 80.2 73.8 88.4 88.4
High-vegetated 84.9 77.6 96.7 78.1 91.6 89.4 NA NA NA NA NA NA
Level 3 OA: 75.4 OA: 75.6 OA: 82.0 OA: 77.8 OA: 76.0 OA: 87.1

PA UA PA UA PA UA PA UA PA UA PA UA
Permanently moist 73.0 73.0 66.2 77.8 83.9 83.2 75.6 90.0 72.4 79.3 94.1 87.8
Temporarily flooded 64.1 81.2 72.3 87.3 73.5 93.2 66.7 77.9 68.4 87.4 78.4 94.0
Permanently flooded 97.6 71.3 90.8 60.3 98.9 67.4 96.1 77.9 93.6 62.9 94.9 78.1
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be important metrics in this classification level (Fig. 5).
The OAs for classifications in Level 2 (wetland vegetation types)

ranged from 77.0%–90.9% (Table 4). The OA of S1+HV (83.8%) was
relatively high compared with the OA of S2+HV (77.0%). A high ac-
curacy improvement was observed in S1S2+HV, leading to an OA of
90.9%. Non-vegetated wetland was classified with relatively high ac-
curacies especially in classifications involving Sentinel-2, while low-,
medium- and high-vegetated wetland had relatively high accuracies in
classifications involving Sentinel-1. Medium-vegetated wetland had the
highest confusion throughout all classifications, both with low-vege-
tated- and high-vegetated wetland. The two S1 classifications showed a
relatively poor distinction for the classes non-vegetated- and low-vege-
tated wetland, resulting in an overestimation of non-vegetated wetland.
The exclusion of high-vegetated wetlands led to small OA improve-
ments in S1-HV and S2-HV, but not in S1S2-HV. Important metrics in this
classification level were the median and minimum MNDWI, mean VH
and minimum VV (Fig. 5).

The OAs for classifications in Level 3 (surface water dynamics)
ranged from 75.4%–87.1% (Table 4). The OAs for S1+HV and S2+HV

showed no significant difference, but the improvement in S1S2+HV was
relatively high, leading to an OA of 82.0%. The exclusion of high-ve-
getated wetlands led to a significant OA increase only in S1S2-HV

(87.1%). An overestimation of permanently flooded wetland at the cost of
temporarily flooded wetland was indicated by their high PA and UA

respectively. Important metrics in this classification level were the
maximum MNDWI and the mean and median VVrVH (Fig. 5).

By overlaying the level-based classification outputs, multi-level
wetland maps were revealed (Fig. 7). The OAs of these maps showed no
significant differences for the S1 and S2 classifications (Table 5). The
results obtained in both S1S2 classifications showed large accuracy
improvements though, with an OA of 76.4% for S1S2-HV. Several classes
were occasionally severely over- or underestimated.

5. Discussion

The results for the wetland characterisation methods showed the
superiority of combining Sentinel-1 and -2 data over the use of data
from the individual satellites. Also, it was found that the use of Sentinel-
1 data did not suffice for accurate wetland delineations and classifica-
tions in highly vegetated areas. Classifications neglecting high-vege-
tated wetlands resulted in higher accuracies.

The Level 1 classifications for general wetland delineation showed
satisfying accuracies for Sentinel-2 and the combined use of Sentinel-1
and -2, while the sole use of Sentinel-1 performed relatively poor
(Table 4). The observation of Sentinel-2 being more accurate for gen-
eral wetland delineation than Sentinel-1 is in line with the findings in
earlier studies (Hird et al., 2017; Mahdianpari et al., 2018). Confusion
in all classifications was observed mainly between wetland and upland.

Table 5
Overview of the accuracies (%) of the overlaid level outputs. NV = non-vegetated, LV = low-vegetated, MV = medium-vegetated, HV = high-vegetated,
PM = permanently moist, TF = temporarily flooded, PF = permanently flooded.

Overlaid maps S1+HV S2+HV S1S2+HV S1-HV S2-HV S1S2-HV

OA: 55.0 OA: 55.5 OA: 69.1 OA: 64.9 OA: 64.1 OA: 76.4
PA UA PA UA PA UA PA UA PA UA PA UA

Permanent water 94.2 62.0 88.5 93.9 94.2 98.0 92.3 63.2 90.4 94.0 94.2 75.4
Upland 58.1 49.7 66.9 54.6 36.3 90.0 79.0 69.5 85.5 69.7 83.1 84.4
WL NV TF 37.5 64.3 89.5 82.7 97.9 94.0 41.7 64.5 89.6 86.0 64.6 91.2
WL LV PM 63.2 66.7 29.8 54.8 77.2 88.0 61.4 71.4 40.4 54.8 73.7 77.8
WL LV TF 51.9 84.8 46.3 59.5 79.6 86.0 61.1 71.7 37.0 52.6 77.8 82.4
WL LV PF 90.7 86.7 79.1 72.3 95.3 82.0 93.0 86.9 76.7 71.7 95.3 80.4
WL MV PM 38.2 34.2 32.4 40.7 82.4 56.0 32.4 28.9 29.4 55.6 76.5 53.1
WL MV TF 18.5 50.0 21.5 34.1 55.4 72.0 26.2 44.7 30.8 42.6 44.6 69.0
WL MV PF 88.9 51.6 66.7 41.4 88.9 64.0 86.1 64.6 75.0 38.6 80.6 64.4
WL HV PM 3.3 20.0 30.0 36.0 50.0 30.0 NA NA NA NA NA NA
WL HV TF 56.5 34.2 45.7 45.7 52.2 48.0 NA NA NA NA NA NA
WL HV PF 36.4 36.4 54.5 20.0 100.0 22.0 NA NA NA NA NA NA

Fig. 5. Indicators for variable importance of the top-5 ranked metrics according to their MDA and MDG scores.
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These errors were largely reduced after the exclusion of high-vegetated
areas. This can be partially explained by a limited capacity of Sentinel-
1′s C-band sensors operating in VV/VH mode to capture differences in
upland forests and high-vegetated wetlands such as swamp- or man-
grove forests. Such findings were also achieved by Mahdianpari et al.
(2018). As earlier studies revealed, the use of L- or P-band radar sys-
tems and HH polarisation is more suitable for this purpose (Wang et al.,
1995). A clear difference for the classifications with either Sentinel-1 or
-2 is the amount of confusion between permanent water and non-vege-
tated wetland, where Sentinel-1 showed a poorer performance than
Sentinel-2. This indicates that Sentinel-2 has a higher capacity to cap-
ture differences in areas that are on the edge of being either shallow
water or tidal flat, as such differences are rather distinguishable in
terms of spectral reflectance than in terms of structure.

The Level 2 classifications for wetland vegetation types showed
higher accuracies for Sentinel-1 than for Sentinel-2. The accuracy im-
provement when combining Sentinel-1 and -2 was relatively high
(Table 4). The ordinal nature of the used classification scheme explains
the confusion observed for medium-vegetated wetland, as this class falls

in between low- and high-vegetated wetland. This phenomenon is known
for shrubland classes within vegetation classifications in general
(Tsendbazar et al., 2016). As the importance of the metrics VH mean
and VV minimum was high, it is likely that volume scattering (espe-
cially for VH in medium- and high-vegetated wetland), double-bounce
scattering (especially for VV in low- and medium-vegetated wetland) and
specular reflection (especially for VV in non- and low-vegetated wetland)
are well observed with Sentinel-1 and contribute to an accurate clas-
sification of wetland vegetation types. The addition of Sentinel-2,
especially the metrics for MNDWI, clearly leads to a more accurate
distinction of non- and low-vegetated wetland.

The Level 3 classifications for surface water dynamics showed si-
milar overall accuracies for Sentinel-1 and -2, but the combination of
Sentinel-1 and -2 led to a high accuracy improvement (Table 4). The
similar accuracies for Sentinel-1 and -2 are somewhat surprising, as it
was expected that Sentinel-1 and its high-temporal density would out-
perform Sentinel-2 for mapping wetland dynamics. However, this can
be explained by the fact that the used temporal metrics were derived
from the entire time period, leading to compressed information on
temporal dynamics. Also, only three classes for surface water dynamics
were considered, while Sentinel-1’s quality can be truly emphasised in
more detailed classifications on flood frequencies, as earlier studies
have shown (Huang et al., 2017; Tian et al., 2017; Xing et al., 2018).
The constant overestimation in this classification level of permanently
flooded wetland was most likely due to the fact that this class is rare
within the study area, while the size of its training sample was equal to
the more abundant classes. Using such an equal-size training sample
design usually leads to overestimations of rare classes (Colditz, 2015).
An important note for the classifications in both Level 2 and Level 3 is
that possible misclassified wetlands in Level 1 are included in these
subsequent levels and may have caused extra confusion.

The overlaid outputs of all classification levels revealed maps that
show both wetland vegetation types and surface water dynamics. In this
way, results were presented for mapping wetland characteristics at a
high resolution in multiple levels. The combination of Sentinel-1 and -2
reached OAs of 69.1% and 76.4% for mapping ten and seven multi-level
wetland classes respectively (Table 5). Combining all levels into in-
tegrated maps naturally led to decreasing accuracies, because errors
from all individual classification levels were transferred into the
overlay.

It was found that the total extent of wetlands mapped in this study
was rather similar to the extent mapped in earlier high-resolution
general land cover classifications in the St. Lucia Wetlands (e.g.
Ezemvelo KZN Wildlife, 2011; GTI, 2015). However, the presented
multi-level classification method contributes largely by further char-
acterising these wetlands for their vegetation types and surface water
dynamics and reveals more detailed information beyond the general
delineation of wetland extent. Although the presented methods in this
study will be transferable for large scale mapping, their applicability to
other climate zones should be assessed in further research.

A main limitation in this study was the collection process of
training- and validation samples. Although the use of high-resolution
aerial- and satellite images is a widely adopted method for this purpose
(Lesiv et al., 2018), on-site collection of samples would contribute to
more reliable reference data. The use of high-resolution images as a
reference has a limitation for the number of distinguishable classes to
be used in the classification scheme. Especially in the Level 3 classifi-
cation, more details in characterising surface water dynamics may
better reveal the capabilities of the temporally dense Sentinel-1 data.
However, methods used in this study to employ temporal metrics ob-
tained over an entire time series may not be suitable to characterise
more detailed dynamics in wetland areas. Other methods (e.g. classi-
fications of single images or time series analyses with more temporal
detail) should be considered in such cases. Also, the spectral resolution
of Sentinel-2 could be exploited in a better way by incorporating ad-
ditional indices or individual band measures, of which especially the

Fig. 6. Distribution of validation points generated with a stratified random
sample from the S1S2+HV classification. The background map shows the Level 1
classification result for S1S2+HV.
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Fig. 7. Overlaid output of the S1S2-HV classification (left) and a detailed comparison of all overlaid outputs (right). PM = permanently moist, TF = temporarily
flooded, PF = permanently flooded.
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red-edge and NIR have an added value for wetland characterisation
(Mahdavi et al., 2018).

6. Conclusion

The many different complexities occurring in wetlands make it
challenging to characterise this valuable and threatened land cover type
from space. This study presented the use of multitemporal Sentinel-1
and -2 data for comprehensive wetland characterisations. The use of the
data was assessed in multiple levels including general wetland deli-
neation, wetland vegetation types and surface water dynamics, which
were applied in a sub-tropical study area. The results revealed high
classification accuracies when combining Sentinel-1 and -2. Regarding
the individual satellites, Sentinel-2 showed higher accuracies for gen-
eral wetland delineation, while Sentinel-1 was preferred for mapping
different wetland vegetation types. There were no significant accuracy
differences for mapping surface water dynamics with either Sentinel-1
or -2. It was also found that mapping high-vegetated wetlands could not
be done accurately, especially because Sentinel-1’s C-band sensors in
VV/VH mode did not suffice to detect subcanopy water bodies in
flooded forests. When neglecting high-vegetated wetlands and using the
combination of Sentinel-1 and -2, an OA of 76.4% was reached for a
highly detailed wetland classification in the St. Lucia wetlands.

Regarding the current rates of wetland loss and the importance of
wetland monitoring arising therefrom, this study contributed by re-
vealing the potential of the freely available, high spatial and temporal
resolution Sentinel-1 and -2 data for detailed, multi-level wetland
characterisations. Given the limitations of this study, to improve the
accuracy of wetland characterisation and to better characterise wetland
dynamics, future studies may involve more sophisticated methods for
time series analysis of Sentinel-1 and additional indices or band mea-
surements of Sentinel-2. Besides this, on-site measurements to collect
reference data will contribute largely to the accuracy assessments for
this study.
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