
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

A highly automated algorithm for wetland detection using multi-temporal
optical satellite data
Christina Ludwig, Andreas Walli, Christian Schleicher, Jürgen Weichselbaum, Michael Riffler*

GeoVille Information Systems and Data Processing GmbH, Sparkassenplatz 2, 6020 Innsbruck, Austria

A R T I C L E I N F O

Keywords:
Wetland detection
Water body mapping
Split-based image thresholding
Image compositing
Sentinel-2
Water frequency
Wetness frequency
WWPI

A B S T R A C T

Wetlands are valuable ecosystems providing a variety of important ecosystem services such as food supply and
flood control. Due to increasing anthropogenic influences and the impact of climate change, wetlands are in-
creasingly threatened and degraded. An effective monitoring of wetlands is therefore necessary to preserve and
restore these endangered ecosystems. Earth Observation (EO) data offer a great potential to support cost-ef-
fective and large-scale monitoring of wetlands. Current state-of-the-art methods for wetland mapping, however,
require large training data and manual effort and can therefore only be locally applied. The focus of this study is
to evaluate a methodology for large-scale and highly automated wetland mapping based on current EO data
streams. For this purpose, an algorithm for water and wetness detection based on multi-temporal optical imagery
and topographic data is presented. Suitable spectral indices sensitive to water and wetness were identified using
feature selection methods based on mutual information between optical indices and occurrence of water and
wetness. In combination with the Topographic Wetness Index (TWI), these were used to derive monthly water
and wetness masks using a dynamic thresholding approach. Aggregating all observations corrected for seasonal
bias yielded flooding and wetness frequencies and the Water Wetness Presence (or Probability) Index (WWPI) as
an indicator for wetland occurrence or a pre-inventory. To demonstrate the applicability of the proposed
method, the algorithm is demonstrated at three study sites with different wetland types in Kenya/Uganda,
Algeria, and Austria using Sentinel-2 MultiSpectral Instrument (MSI) imagery. For all sites, the overall accuracy
was above 92%. User's and producer's accuracies were higher for water (> 96%) than for wetness (> 75%). Due
to the high degree of automation and low processing time, the proposed method is applicable on a large scale
and has already been applied during the production of the Copernicus High Resolution Water-Wetness Layer and
within the European Space Agency (ESA) project GlobWetland Africa.

1. Introduction

Wetlands are very important ecosystems providing habitat for a
variety of flora and fauna as well as many valuable ecosystem services
such as flood control, water purification, and food supply. However,
with increasing human water demand for agriculture, livestock, and
settlements, wetlands are becoming increasingly threatened and de-
graded especially in water scarce regions (Ramsar Convention, 2016).
Effects of climate change such as temperature increases and changes in
precipitation patterns, are expected to have a significant impact on the
occurrence, structure and functions of wetlands (Erwin, 2009), espe-
cially in their role as an organic carbon sink (Junk et al., 2013).

Thus, for preservation and restoration of wetlands, a cost-effective
and efficient monitoring of these ecosystems is necessary. Satellite data

offers great potential for wetland monitoring and has been the subject
of many studies (Tiner et al., 2015). Yet, a large-scale monitoring
system that captures the seasonal dynamics and long-term trends of
wetlands has not yet been implemented. Pekel et al. (2016) produced a
global surface water map based on the Landsat archive. Although being
a first step towards large-scale monitoring of water-related ecosystems,
it is not sufficient for wetland monitoring, since only the spatio-tem-
poral distribution of open surface water is covered and the mapping of
wet soils is missing.

Due to their high spatial heterogeneity and temporal dynamics,
wetlands are very difficult to map using remote sensing imagery
(Ozesmi and Bauer, 2002). Seasonal or daily water level changes make
the extent and spectral signature of wetlands highly dynamic. There-
fore, mono-temporal classification approaches are not sufficient to fully
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capture the temporal dynamics of wetlands and to delineate their ex-
tents. Multi-temporal imagery increases the accuracy of classification
results (Ozesmi and Bauer, 2002) and enables the monitoring of the
seasonal dynamics of the water regime of the wetland. Imagery from
the Landsat 8 Operational Land Imager (OLI) and Sentinel-2 Multi-
Spectral Instrument (MSI) provide the necessary spatial and temporal
resolution to facilitate the implementation of an effective wetland
monitoring methodology.

Water and wet surfaces characteristically show strong absorption in
the near infrared (NIR) and shortwave infrared (SWIR) spectrum, while
dry soils and vegetation are highly reflecting radiation in these spectral
ranges (Tiner et al., 2015). Hence, these spectral bands and indices
derived thereof have a high potential for measuring moisture levels in
soils and vegetation and are popular indicators for water body deli-
neation and wetland mapping (Kulawardhana et al., 2007; Islam et al.,
2008; Bwangoy et al., 2010; Davranche et al., 2013). Using these bands
for classification is also advantageous, since radiation in this spectral
range is usually less affected by atmospheric aerosol scattering than the
visible spectral region (Gao, 1996).

Based on these physical principles, the Normalized Difference Water
Index (NDWI) including the green and near-infrared radiation was de-
veloped for water body mapping by McFeeters (1996). Xu (2006)
modified this index by substituting the NIR band with the shortwave
infrared 1 (SWIR1) band calling it the modified Normalized Difference
Water Index (mNDWI). This modification considerably improves the
detectability of open water bodies and reduces confusion with built-up
areas. NDWI and mNDWI have successfully been applied for water body
mapping in several studies (Li et al., 2013; Chen et al., 2013; Rokni
et al., 2014; Jiang et al., 2014; Tetteh and Schönert, 2015; Donchyts
et al., 2016). Furthermore, the Tasselled Cap Wetness Index (TCWI) and
Tasselled Cap Brightness Index (TCBI) have been proven to be suitable
for the detection of inundated areas (Orodyne and Friedl, 2008; Tana
et al., 2013; Islam et al., 2008). The Automated Water Extraction Index
(AWEI) was developed for Landsat 5 Thematic Mapper (TM) bands to
maximize the separability of water and non-water land cover classes
using a steady threshold of zero and is especially targeted at improving
the separability of water and shadows (Feyisa, 2014).

For wetland mapping, additional spectral indices that are particu-
larly sensitive to moisture level changes in soils and vegetation have
been applied. Gao (1996) developed the NDWI, also known as the Land
Surface Water Index (LSWI) or Normalized Difference Moisture Index
(NDMI), which quantifies moisture levels in vegetation and exhibits a
positive correlation with surface water and soil moisture (Zhao et al.,
2009). Furthermore, Davranche et al. (2013) proposed the Modified
Water Index (MWI), Modified Water Impoundment Index (MWII), and
Modified Index of Free Water (MIFW) for detecting wet soils. The
Shortwave Angle Slope Index (SASI) (Khannaa et al., 2007) and the
Normalized Multi-band Drought Index (NMDI) (Wang and Qu, 2007)
have also been used to distinguish changes in plant water content and
soil moisture.

Image enhancement techniques such as RGB False Color Composites
(FCCs) of spectral bands or band ratios are other approaches which
have been used for water and wetland mapping. Kulawardhana et al.
(2007) and Islam et al. (2008) used FCCs based on the red, NIR and
SWIR1 bands to highlight wetlands for manual digitization. By applying
a Hue-Saturation-Value (HSV) transformation, FCCs can also be used
for automated wetland classification. This has been done for water
detection by Pekel (2014) using the SWIR1, NIR, and red bands and by
Jiang et al. (2011) using the Normalized Difference Vegetation Index
(NDVI), Normalized Difference Build-up Index (NDBI), and mNDWI.

Even though a variety of spectral indices for the detection of water
and wet soils (hereafter referred to as wetness) is available, wetlands are
still easily confused with other upland land cover types such as forests
and shadows, since they share similar spectral profiles (Ozesmi and
Bauer, 2002; Tiner et al., 2015). Including additional ancillary data into
the classification considerably reduces these errors and improves

classification results (Ozesmi and Bauer, 2002). Since the occurrence of
wetlands strongly depends on the topography of the landscape, topo-
graphic indices have been widely used for water and wetland mapping
(Corcoran et al., 2011; Bwangoy et al., 2010; Fluet-Chouinard et al.,
2015). Topographic information has also been used to reduce com-
mission errors within non-flood prone areas using slope (Li and Chen,
2005), the Height Above Nearest Drainage (HAND) index (Martinis
et al., 2009) and other features derived from a Digital Elevation Model
(DEM) such as sinks and streamlines (Landmann et al., 2010).

The most common classification methods for wetland mapping are
unsupervised (Dogan et al., 2009; Chen et al., 2014), supervised
(Bwangoy et al., 2010; Corcoran et al., 2011; Fluet-Chouinard et al.,
2015) and hybrid classification combining supervised and unsupervised
classification approaches (Mwita et al., 2012; Lane et al., 2014). Chen
et al. (2014) used unsupervised ISODATA classification based on a
moderate resolution imaging spectroradiometer (MODIS) NDVI time
series to classify different wetland types. Random Forest (Breiman,
2001) is the most popular supervised classification method for wetland
mapping and has been applied by Bwangoy et al. (2010) to map wet-
lands in the Congo Basin. Li and Chen (2005) showed that an integrated
classification approach using rule-based classification, decision tree
classifiers, and separate classification of optical and Synthetic Aperture
Radar (SAR) (C-band) data leads to good mapping results for bogs and
fens.

Kulawardhana et al. (2007) used a rule-based classification ap-
proach based on static thresholds of spectral indices to map wetlands,
but they did not yield satisfying classification results. Classification
methods based on dynamic thresholding were more successful. Otsu
thresholding is one of the most popular classification methods for water
mapping using SAR imagery, since it is computationally relatively in-
expensive, fast, and reliable (Martinis et al., 2009). Donchyts et al.
(2016) used Otsu thresholding and a Random Forest classifier based on
the mNDWI and HAND index to successfully map water bodies. Tile-
based image thresholding has been developed by Martinis et al. (2009)
for water body mapping using SAR imagery, but has not been tested for
water and wetness detection using optical imagery yet.

A major challenge when mapping wetlands is the diversity of ex-
isting definitions. Tiner (2016) provides an exhaustive review of var-
ious wetland definitions. According to the author, no unique or scien-
tific definition for wetlands does exist but rather depends on the field of
study, reporting obligations, etc. According to Charman (2002), wet-
lands can be defined by three different aspects: hydrology, soil type,
and vegetation. In this study, we focus on the hydrological definition of
wetlands by separating wetlands from other land cover types in se-
parating dry and wet soils as well as open surface water based on
spectral indices which physically link measured reflectance to moisture
levels in soil and vegetation. However, in contrast to most other wet-
land classification methods, the approach presented herein does not
rely on absolute reference values to distinguish wetness from dryness
(e.g., static thresholds of soil moisture or plant water content or su-
pervised learning algorithms), but delineates wetlands based on their
spatial context, i.e., the contrast between wet and dry surfaces. This
means that wetlands are mapped in relative instead of absolute terms,
which is crucial for making the proposed method applicable for wetland
mapping in different bio-geographic regions without the need for ex-
tensive training data. Furthermore, wetlands are fuzzy objects with no
clear boundary, thus, the one right threshold to delineate them does not
exist, but a range of plausible thresholds needs to be considered
(Bennett, 2001).

Current state-of-the-art methods for wetland mapping require large
training data and manual effort which is why they can only be applied
locally. The aim of this study is to investigate whether wetland mapping
can be performed for large areas and within different bio-geographic
regions in a highly automated way and without the need for extensive
training data. For this purpose, an algorithm for water and wetness
detection using multi-temporal optical imagery and topographic data to
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support large-scale mapping exercises in a cost-effective manner is
proposed. It is demonstrated using Sentinel-2 MSI imagery, but is also
applicable to other imagery with similar spatial and temporal resolution
(and spectral channels) such as the Landsat missions. The spectral sig-
natures of water and wet surfaces are enhanced by applying different
image enhancement methods to a combination of spectral and topo-
graphic indices derived from monthly image composites. A modified
form of tile-based image thresholding is subsequently used to delineate
open water and wet surfaces. To ensure the identification of a valid
threshold, locally adaptable constraints to the classifier are introduced
to guide the detection algorithm. Applied to the whole time series, this
yields monthly water and wet soil masks. These are subsequently used
to compute the overall water and wetness frequency maps, as well as
the Water and Wetness Presence (or Probability) Index (WWPI) which
serves as a pre-inventory of wetlands. To evaluate the performance of
the method in different bio-geographical regions, results are presented
for three different study sites in Africa and Europe. The first site is lo-
cated in a dry climate with sparse vegetation, the second one in a tro-
pical climate with dense vegetation and the third one in a temperate
central European climate. The proposed method is a first step towards
the implementation of a monitoring system to track long-term trends in
wetlands and the creation of a global wetland inventory.

The outline of the paper is as follows: In Section 2, the three study
sites and the available input data is described. Subsequently, the
methods for image compositing, the calculation of water and wetness
probabilities, tile-based image thresholding and validation are ex-
plained. The classification results are presented and discussed in
Sections 3 and 4.

2. Data and methods

2.1. Study sites

To demonstrate the suitability and general applicability of the
method for the detection of wetland areas in different bio-geographic
areas, the proposed approach has been tested and validated at three
different locations in Africa and Europe. The first site is located in a dry
climate with sparse vegetation, the second one in a tropical climate
with dense vegetation and the third one in a temperate central
European climate. The focus on these continents is caused by the fact
that the methodology has been developed within the ESA project
“GlobWetland Africa” for which dozens of wetland areas throughout
Northern, Western, Eastern and Central Africa are mapped as well as for
the production of the European Environmental Agency (EEA) Pan-
European High Resolution Layers (HRL) “Water and Wetness”.

2.1.1. El Kala Wetland System, Algeria
The El-Kala Wetland System is a complex of wetlands, lakes and

rivers, marshes and sea inlets situated within the El-Kala National Park
(Smart and Hollis, 1990) (Fig. 1A). The climate is temperate with hot,
dry summers and rain fall mainly occurring in winter (Kottek et al.,
2006). The two freshwater lakes in the East, Lac Tonga and Lac Ou-
beïra, are part of “The Ramsar List of Wetlands of International Im-
portance” (Smart and Hollis, 1990). A considerable part of Lake Tonga
is drying out during summer as a consequence of water extraction
leaving only reed beds behind. The Marais de la Mekhada is a fresh-
water marsh located within the Mafragh floodplain which is connected
to the Mediterranean Sea through a narrow channel. 80% of the marsh
is vegetated by rushes and during the wet season it reaches a water
depth of up to 1m. The Oum Lâagareb wetland is a densely forested
floodplain peat land which is rarely found in the area. Most wetlands
within the complex are important nesting and wintering grounds for
birds and support a range of rare plant and animal species. The wet-
lands are threatened by human intervention in the form of infra-
structure development and excessive water extraction for irrigation
(Ramsar Convention, 2001).

2.1.2. Sio-Siteko Wetland, Uganda/Kenya
The Sio-Siteko Wetland is located at the northern shore of Lake

Victoria spanning the boarder of Uganda and Kenya (Fig. 1B). The
predominant climate is equatorial and monsoonal according to Köppen-
Geiger (Kottek et al., 2006). Rainfall occurs throughout the year with
two rainy seasons around April and October. The wetland covers an
area of 8.900 ha and consists of several interconnected wetland sub-
systems. The Sio river flows through the wetland and drains into Lake
Victoria. The wetlands provide many important ecosystem services such
as the supply of fresh water and food, water purification, and provision
of habitats for plants and animals. Due to human interventions like
canalization, extraction of water for agriculture, livestock, and cities,
the wetlands are threaded by sinking water quality and fluctuations in
the water level, which are likely to have a negative impact on flora,
fauna, and the ecosystem services the wetland provides (MEMR, 2012).

2.1.3. Lake Neusiedl, Austria
Lake Neusiedl is located within the National Park Neusiedler

See–Seewinkel spanning the Austrian-Hungarian border (Fig. 1C). The
climate is temperate with cool, rainy summers (Kottek et al., 2006). The
lake is 36 km long and 6–12 km wide covering an area of 315 km2. The
lake is very shallow reaching a maximum water depth of 1.8m. It is the
largest endorheic lake in Central Europe and one of the two steppe lakes
in Europe (Beiwl and Mühlmann, 2008). In addition to precipitation
and groundwater inflow, the lake is fed by the Wolka in the North. Its
only outflow is the Hansag channel in the South. The lake is almost
completely surrounded by reed beds and marshes, which provide a
unique habitat for plants and animals especially birds. There is a
complex of 80 small lakes and remnant salt meadows in the sur-
roundings of the lake, some of which are only seasonally flooded. Reed
harvesting, bird hunting, fishing, and tourism are the main form of
human intervention. In addition, the area around the lake is extensively
farmed (Ramsar Convention, 2001).

2.2. Data

2.2.1. Sentinel-2 MSI
The Sentinel-2 MSI measures the Earth's reflected radiance in 13

spectral bands covering the visible, near-infrared, and short wave in-
frared spectrum. Sentinel-2 is a twin-orbit constellation (Sentinel-2A/B)
with a revisit time of approximately five days at the equator and even
shorter periods towards the poles. Sentinel-2 data is available as a
Level-1C product with radiometric and geometric corrections applied
including conversion to Top-Of-Atmosphere (TOA) reflectance, or-
thorectification and spatial registration (European Space Agency,
2015). For the three study sites, all available Sentinel-2 observations
from December 2015 until July 2017 with a cloud coverage of less than
80% were considered.

For the Sio-Siteko Wetland, 64 Sentinel-2 observations between
December 2015 and June 2017 are available. These data were sufficient
to derive almost complete monthly image composites for all months but
April of both years. There are 69 Sentinel observations covering the El-
Kala Wetland Complex between December 2015 and June 2017. Due to
more frequent cloud coverage in winter, the number of observations
during this season is reduced with only two scenes with less than 80%
cloud cover in December 2016 and none in January 2017. For Lake
Neusiedl, 130 Sentinel-2 observations from two granules were pro-
cessed. Due to clouds and snow, the number of observations is also
reduced during winter. This bias is, however, accounted for in the
calculation of the overall water and wetness frequencies by normalizing
the frequencies on a seasonal basis (see Section 2.3.6).

2.2.2. Digital elevation model
A DEM generated from the NASA Shuttle Radar Topography Mission

(SRTM) in 2000 was used to calculate the Topographic Wetness Index
(TWI) (see Section 2.3.3). The SRTM DEM was derived using radar

C. Ludwig, et al. Remote Sensing of Environment 224 (2019) 333–351

335



interferometry and was processed at 1-arc-second resolution. The ab-
solute vertical accuracy of the SRTM DEM is less than 9m with the
greatest errors occurring in steep terrain and smooth sandy surfaces
(Farr et al., 2007).

2.2.3. Training data
The selection of suitable indices for water and wetness detection

required training data sets with land cover information. For each study
site, sample points for water, wet surfaces with varying degrees of ve-
getation cover and other land cover classes such as forest and urban
areas were created. The sample points were manually placed and la-
belled using available in-situ maps, Google Earth Imagery and the
Global Lakes and Wetlands Database (GLWD) provided by the World
Wildlife Fund (WWF). The GLWD compromises large lakes, man-made
reservoirs, smaller water bodies, and their maximum extents as well as
different types of wetlands worldwide with a spatial resolution of
30 arc-seconds (World Wildlife Fund, 2016). In addition, spectral in-
dices derived from selected monthly Sentinel-2 composites (see
Section 2.3.1.3) were also used as a reference to better distinguish dry
from wet surfaces.

2.3. Methods

The proposed algorithm is based on a multi-temporal classification
approach (Fig. 2). Pre-processing includes cloud masking and monthly
image compositing (see Section 2.3.1.3), calculation of monthly water
and wetness (wet soil) probabilities and derivation of monthly water
and wetness extents using tile-based image thresholding (see
Section 2.3.5). Aggregating these extents yields the water and wetness
frequencies for the whole investigation period from which the Water
Wetness Presence (or Probability) Index (WWPI) is derived (see
Section 2.3.6). Details of the processing steps are explained in the fol-
lowing section.

One of the assumptions behind the proposed method is a sufficient
contrast between water, wet soils (wetness) and their dry surroundings.
For water, this is usually given due to the distinctive spectral signature
compared to other land cover types. In the case of wetness, this contrast
is usually not as pronounced, but can be increased using image en-
hancement techniques and additional topographic information.
Furthermore, the selection of satellite observations for the analyses
need to cover the full hydrological year to derive a representative
classification result.

Fig. 1. True-color images of the study sites: A) El-Kala Wetland Complex, Algeria. B) Sio-Siteko Wetland, Uganda/Kenya. C) Lake Neusiedl, Austria. The designations
of the sites reflect the order of presentation.
Source: Imagery: MapQuest OpenAerial.
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2.3.1. Pre-processing
2.3.1.1. Cloud and cloud shadow detection. In order to derive monthly
image composites with a minimum amount of atmospheric
contamination, clouds and their shadows were masked out of the
individual scenes before creating the image composites. Clouds and
shadows were automatically detected using the Sen2Cor cloud
detection algorithm (Louis et al., 2016). This method, however,
generally shows high omission error rates for cloud shadows (Zhu
and Woodcock, 2014). These undetected cloud shadows are often
confused with water or wet surfaces, since these classes are spectrally
very similar. A thorough cloud shadow removal is therefore essential to
accurately map water and wetness. The Tmask algorithm proposed by
Zhu and Woodcock (2014) yields better results for cloud shadow
detection, but was discarded due to the required high computational
effort.

Instead, a multi-temporal classification method based upon the time
series of the NIR spectral band and the normalized differences between
the blue, NIR, and SWIR1 channels was applied to mask out undetected
cloud shadows. Using this method, pixels are classified as cloud sha-
dows, if their NIR spectral value is lower than the 5th percentile of the
time series and the normalized difference between the blue and the
maximum of the NIR and SWIR1 bands is within the range of −0.25
and 0.25. Furthermore, cloud shadows are only flagged as such, if they
are within a 20 pixel buffer around previously detected clouds. This
approach is based upon two facts. First, shadowing leads to a strong
decrease in reflectance of the NIR channel. Second, shadows have a flat

spectral profile, so the normalized differences between all spectral
bands is around zero.

2.3.1.2. Radiometric normalization. Prior to image compositing, all
Sentinel-2 scenes were radiometrically normalized to one common
reference image to reduce artifacts in image composites caused by
differences in atmospheric conditions and solar illumination. The
radiometric normalization was performed using histogram matching.
The reference image for the normalization was derived by creating an
image composite based upon the 25th percentile of all observations in
the blue spectral band (see Section 2.3.1.3). The assumption behind this
approach is that the 25th-percentile-composite will contain the clearest
observations out of the whole time series thereby reliably excluding any
form of atmospheric contamination that might impair the
normalization result. An analysis of different reference images
revealed that this method leads to the biggest decrease in Root Mean
Square Error (RMSE) between the normalized images (Table 1).
Histogram matching using these three reference images always led to
a reduction of the RMSE in all bands compared to the original images.
However, the seasonal reference image yielded the smallest
improvement. This can be explained by the fact that even the best
image within a season is more contaminated with clouds and shadows
than the other two reference images. Using the best image of the whole
time series yielded better results for most bands, but the smallest RMSE
values were achieved using the 25th percentile composite.

2.3.1.3. Image compositing. Due to the frequent and high cloud
coverage, especially in (sub-)tropical regions, single images do not
always provide enough information to reliably delineate water and
wetland extents throughout the year. Therefore, best pixel compositing
was applied to create one continuous image for each month. In this
way, seasonal bias due to higher cloud coverage during the rainy season
in (sub)-tropical regions or the winter months in northern latitudes is
avoided and spatially continuous water and wetness masks can be
derived.

Various methods for image compositing exist. The most widely used
method is the maximum value compositing procedure for which the
pixel with the least probability for cloud and haze contamination is
chosen for the composite depending on a certain criterion (Holben,

Fig. 2. Graphical workflow diagram of the algorithm for water and wetness detection.

Table 1
RMSE between two Landsat 7 scenes taken on September 16th and October
18th 2012 before (original images) and after histogram matching using dif-
ferent reference images.

Band Original images 25th precentile Best scene Best scene within
season

BLUE 102.54 72.67 95.47 100.24
GREEN 167.24 87.44 101.78 124.02
RED 278.35 132.55 148.13 193.00
NIR 536.75 372.61 425.25 360.93
SWIR1 372.82 202.89 198.34 255.73
SWIR2 251.77 162.93 177.28 208.42
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1986). Common criteria are the maximum NDVI, a minimum/max-
imum spectral value or a maximum ratio between two spectral bands
(Gutman et al., 1994; Luo et al., 2008). Since all of these criteria have
different strengths and weaknesses in excluding clouds and shadows
from an image composite, Luo et al. (2008) and Lück and Van Niekerk
(2016) proposed a combination of these criteria for image compositing
using Landsat imagery. However, this method relies on the TCBI and
Haze Optimized Transformation (HOT) which have not yet been
adapted to Sentinel-2 imagery. Therefore, this method was not applic-
able in this study. The popular maximum NDVI compositing method is
not suitable for wetland mapping, since it favours observations with
high vegetation content over observations with high water or wetness
content, which are typically characterized by low NDVI values. As a
result, temporary occurrences of water or wetness are often excluded
from the composite.

Instead, the 25th percentile of the blue spectral band of the whole
image time series was used as the compositing criterion. This method is
based upon the fact that the blue band is a good estimator of atmo-
spheric contamination due to the high scattering effect in this spectral
range. So it is assumed that the lower the reflectance value of the blue
band, the less atmospheric contamination is present. Very low re-
flectance values, however, are often caused by shadows. Thus, creating
a minimum blue composite might reliably exclude haze and clouds, but
it will be very likely to include cloud shadows as well.

2.3.2. Spectral indices
A plethora of spectral indices has been used for open water and

wetland mapping in past studies. Although many of these are good
predictors for wetness, reliable wetness detection using a combination
of indices from different scales was not possible. Combining indices of
different scales poses the problem that the indices must be normalized
prior to aggregation to weight every index equally. Depending on the
normalization method, the original index value range that is sometimes
connected to physical properties gets lost. This, however, is an im-
portant feature to ensure the selection of a valid threshold between
water, wet and dry surfaces. To avoid this problem, the selection of
indices was limited to Normalized Difference Indices (NDIs) as far as
possible.

The most promising indices that were considered in this study are
summarized in Table 2. To avoid confusion between the different NDWI
definitions by McFeeters (1996) and Gao (1996), the latter one is
hereinafter referred to as the Normalized Difference Moisture Index
NDMI. Most of these indices are NDIs which are calculated using

=
+

ND B1 B2
B1 B2B1B2 (1)

where NDB1B2 is the resulting Normalized Difference Index based on
bands B1 and B2. In this study, all NDIs were calculated in a way that
high index values indicate high probability of water and wetness, while
low values indicate dry land surfaces.

Due to the normalization, the value range of any NDI is [−1,1].

Therefore, these indices do not necessarily have to be normalized prior
to water and wetness probability calculation (see Section 2.3.4) to make
them comparable as it would be necessary, if indices of different scales
were combined. The advantage hereof is that the physical meaning of
the NDI is preserved in the probability index, e.g., a water probability
value of 0.5 would correspond to a NDWI value of 0. This information
can then be used in tile-based image thresholding to ensure the correct
identification of valid thresholds (see Section 2.3.5).

To improve the detection of wetness over dense vegetation, addi-
tional indices had to be considered. The SASI is a spectral index that is
sensitive towards changes in plant water content and soil moisture
(Khannaa et al., 2007). It is, however, only defined for MODIS imagery.
Das et al. (2017) proposed the Angle Based Drought Index 1 (ABDI1)
and Angle Based Drought Index 2 (ABDI2) which are adaptations of the
SASI for imagery that does not contain the same spectral bands as
MODIS imagery. For Sentinel-2 imagery this yields two indices using
SWIR1 for ABDI1 and SWIR2 for ABDI2. They were calculated using

=ABDI NIR arctan NIR SWIR
SWIR NIR (2)

where SWIR and NIR are reflectance values and λNIR and λSWIR are the
wavelengths of the respective bands.

2.3.2.1. Feature selection. For the identification of suitable index
combinations to map water and wetness, feature selection analyses
were performed based on the mutual information between the features
and the class variable similar to Guo et al. (2008). Mutual information
measures the dependence between two random variables and describes
how much information they share. The higher the mutual information
between an independent variable and a binary class variable such as
water/non-water or wetness/non-wetness is, the closer the density
distribution of the independent variable resembles a bimodal
distribution. Maximizing mutual information between the
independent variables and the class label will therefore yield an
optimal bimodal distribution which is a key requirement for dynamic
thresholding (Fig. 3).

The feature selection method proposed by Guo et al. (2008) is based
on a consecutive selection of features based on mutual information
yielding a feature ranking that gives an indication of the most im-
portant indices for water or wetness detection. The feature that shares
the most information with the class variable is chosen as the first fea-
ture. For the selection of the subsequent features, the mutual in-
formation of each remaining feature with the class variable and the
already selected features is calculated. In this way, subsequent features
are chosen based on the additional information they contribute to the
prediction of the class variable and not the absolute information shared
with the class variable. As a result, features that are highly correlated
with the already chosen features will be ranked lower, since they do not
add much new information.

Feature rankings of indices were derived separately for each test
site. First, the five most important indices were identified using the

Table 2
Spectral indices for water and wetness detection and their respective Sentinel-2 bands. Bands 8 and 8A can be used interchangeably.

Spectral index Abbr. Sentinel-2 bands Reference

Normalized Difference Water Index NDWI B3, B8(A) McFeeters (1996)
modified Normalized Difference Water Index mNDWI B3, B11 Xu (2006)
Normalized Difference Vegetation Index NDVI B4, B8(A) Rouse et al. (1974)
Normalized Difference Moisture Index NDMI B8(A), B11 Gao (1996)
Normalized Multi-band Drought Index NMDI B8(A), (B11–B12) Wang and Qu (2007)
Angle Based Drought Index 1 ABDI1 B8(A), B11 Das et al. (2017)
Angle Based Drought Index 2 ABDI2 B8(A), B12 Das et al. (2017)
Normalized Difference NIR - SWIR2 ND0812 B8(A), B12
Normalized Difference GREEN - SWIR2 ND0312 B3, B12
Normalized Difference SWIR1 - SWIR2 ND1112 B11, B12
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above described method. Subsequently, all possible combinations of
two or three of these indices were calculated and mutual information
between them and the class variable was calculated. Sorting them by
mutual information, yielded a ranking of the best index combinations
for each site. These results were taken as starting point to identify
universally applicable index combinations for water and wetness de-
tection.

The detectability of wetness strongly depends on the vegetation
cover. Using only one index combination often leads to commission
errors in urban areas or dry forests. Therefore, feature selection ana-
lyses were performed separately for bare soil (NDVI < 0.3), sparse
vegetation (0.3 < NDVI < 0.6) and dense vegetation (0.6 < NDVI).

2.3.3. Topographic Wetness Index
Wetlands are easily confused with other upland land cover types

such as forests, because these classes show overlapping spectral sig-
natures (Ozesmi and Bauer, 2002; Tiner et al., 2015). Since the oc-
currence of wetlands and open water bodies strongly depends on the
topographic conditions of a region, the TWI was included to improve
classification results and reduce commission errors within upland areas.
The TWI was defined by Beven and Kirkby (1979) as

= a
b

TWI ln
tan( )

,
(3)

where a is the local up-slope contributing area draining through a point
per unit contour length, and b is the local slope in radians. In flat areas,
the TWI tends to unusual high value differences within a small distance
introducing small artifacts (Buchanan et al., 2014). Therefore, a low-
pass filter with a window size of 7× 7 pixels was additionally applied
to level out such irregularities.

For open water mapping, flood-prone areas were identified using
the TWI. Water bodies that are detected outside this area are likely to be
commission errors caused by shadows or other image artifacts.
Therefore, only water bodies detected within the flood-prone areas
were retained while others were reclassified to non-water.

The TWI was rescaled to a probability range of 0 to 1 and pixels with
probability values above 0.5 were classified as flood-prone. This ap-
proach, however, tends to falsely exclude reservoirs built after the
production date of the SRTM DEM. To avoid these omission errors, a
water mask based on the median of mNDWI and NDWI of the whole
time series was derived to identify such water bodies with high con-
fidence. The TWI-derived flood mask was refined using this water mask
with a 60 meter buffer, so that reservoirs are not falsely excluded from
the detected water bodies.

2.3.4. Calculation of water and wetness probabilities
2.3.4.1. Water probability. The calculation of the water probability is
based on a linear combination of spectral indices similar to a regression
analysis. However, the assumption behind this calculation is that all
indices share the same value range and that high index values indicate a
high water probability with a high contrast between flooded and non-
flooded areas. To assure the first assumption, all indices are rescaled to
a value range of 0 to 1 prior to calculation. The water probability was
calculated using

=
=

P w uwater
i

n

i i
1 (4)

where Pwater is the probability that a pixel belongs to the class water, ui
are values of spectral indices for water detection and wi the weight of
the respective index. In contrast to a regression analysis, all weights
were set to 1/n to remove the need for training data. This is sufficient,
since the contrast between water and non-water areas is usually high
and the adaptation of the water detection algorithm to different local
conditions can be performed in a robust way using the dynamic
thresholding algorithm (see Section 2.3.5).

2.3.4.2. Wetness probability. The spectral signature of wet surfaces is
highly dependent on the vegetation cover, thus, three different wetness
probabilities quantifying the presence of wetness over bare soil
(NDVI < 0.3), sparse vegetation (0.3 < NDVI < 0.6) and dense
vegetation (NDVI > 0.6) were calculated. All of these wetness
probabilities were calculated in the same way, but using different
spectral indices that are sensitive to wetness above the respective
vegetation cover type. The derivation of the wetness probability is
based on spectral and topographic data and is calculated using

= × +
=

P w v TWI( ( ) ),wet
i

n

i i
1 (5)

where Pwet is the probability that a pixel belongs to the class wetness, vi
are values of spectral indices, wi the weight of the respective index, TWI
is the Topographic Wetness Index, α and β are coefficients for linear
scaling of the TWI and σ is a sigmoid function defined as

=
+

x
e

( ) 1
1

,x (6)

The first term of Eq. (5) represents the spectral wetness information,

Fig. 3. Density distributions of different index combinations for dry and wet
soil. Spectral index combinations that are suitable for the distinction between
dry and wet soil show higher mutual information values and a bi-modal dis-
tribution (see details in text).
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which is also based on a linear combination of spectral indices with the
same assumptions as for water detection, so all indices share the same
value range and high index values indicate high wetness levels. How-
ever, since the spectral contrast between wet and dry surfaces is not as
pronounced as for open water (Fig. 4a), additional image enhancement
methods were incorporated into the calculation of the wetness prob-
ability to increase the separability of the classes without the usage of
training data. First of all, each wetness index was linearly scaled to a
value range of [0,1] using the 1st and 99th percentile of the complete
index time series excluding open water areas. The 1st percentile can be
interpreted as the driest pixel found in the time series, while the value
at the 99th percentile represents the wettest pixel. By scaling the index
using these boundaries, image contrast is increased and the density
distributions of the indices are better aligned to form an optimal bi-
modal distribution which is an important precondition for the dynamic
thresholding algorithm. Deriving the boundary values based on the
complete times series instead of the respective image preserves the
common scale of the monthly indices, so that the values of the
minimum threshold introduced from dynamic thresholding are suitable
for all image composites. As in logistic regression, the linearly com-
bined indices are transformed using a sigmoid function to further en-
hance the contrast in the transition zone from dry to wet resulting in a
better separability of the two classes in the final wetness probability
image (Fig. 4b).

The second term of Eq. (5) represents the topographic part of the
wetness probability calculation. The main purpose of weighting the
spectral wetness probability with the topographic information is to
reduce commission errors within upland forests by decreasing the
wetness probability in non-flood prone areas (Fig. 4c). The sigmoid
function reduces the roughness of the TWI values in flat areas, where
the TWI sometimes shows unusual artifacts (Buchanan et al., 2014).
The TWI is furthermore scaled to a value range of [0.75, 1] using
α=0.75 and β=0.25 to limit its influence on the wetness probability
value so that the dynamics of the seasonally changing spectral indices is
preserved. Different scaling ranges where tested, but this one gave the
best results by balancing preservation of seasonality and reduction of
commission errors.

2.3.5. Tile-based image thresholding
A tile-based image thresholding similar to Martinis et al. (2009),

which is a modified version of the original Otsu thresholding (Otsu,
1975), was used to successively derive the extent of water and wetness
areas for each monthly composite. Otsu thresholding is a method in
image processing that is used to reduce a grey level image to a binary
image (Otsu, 1975). Using the original Otsu method, the optimal
threshold is identified by minimizing the inter-class variance and
maximizing the intra-class variance. For this purpose, however, this
method did not yield satisfying results. Instead, the threshold was
identified by searching for the minimum in the density distribution. In

case several local minima were detected, the most pronounced
minimum between two peaks providing the largest fraction of area
under the density distribution function was chosen.

In tile-based image thresholding, the image is first divided into
equally sized quadratic tiles. The thresholding is subsequently only
applied to those tiles with the highest variances (larger than 95th
percentile) to derive a local threshold for each tile. The variance is
hereby used as an indicator for the probability that the tile contains
sufficiently large fractions of both classes to guarantee that a valid
threshold can be derived. The mean or median of all local thresholds is
calculated to get a global threshold. In the original approach proposed
by Martinis et al. (2009), this global threshold is applied to the whole
image to derive a binary classification result. Herein, the global
threshold based on the median was adapted for each tile by weighting it
with the mean of the neighboring local thresholds. In this way, the
edges of water bodies are captured more accurately while still retaining
a homogeneous water mask.

The calculation of the local thresholds can be controlled by the tile
size and the minimum threshold value. The selection of the tile size
depends on the spatial resolution of the image and the distribution of
the two classes within the image (Martinis et al., 2009). When applying
Otsu thresholding, a valid threshold can only be derived if both classes
cover roughly equal portions of the image to get a bimodal density
distribution. Dividing the image into very small tiles increases the
processing time and the likelihood that tiles are included in the
threshold calculation which do not include the transition zone between
the two classes. If the tile size is too large, the area fraction of either of
the two classes is too small to form a bimodal distribution.

An analysis of different tile widths from 20 to 200 pixels showed
that the tile size for water and wetness detection using Sentinel-2
imagery should be at least 50× 50 pixels to derive valid thresholds. For
tile sizes bigger than this, the derived thresholds tend to stabilize with
minor fluctuations. For the three study sites, the tile size was kept at a
constant value of 90×90 pixels.

Undetected clouds in satellite imagery often lead to omission errors
above water bodies. To reduce these, a minimum water mask re-
presenting the permanent water bodies in the scene was derived using
the 10th percentile of the mNDWI and NDWI time series. In this way,
omission errors in the monthly water masks were reclassified to water.

The split-based image thresholding sometimes leads to the identi-
fication of wrong thresholds, if the contrast between the two classes is
not strong enough or one of the classes is not present in the image at all.
As a result, the derived water or wetness probability threshold might be
invalid, e.g., it separates dry from wet surfaces instead of water from
land (Fig. 5). To increase the robustness of the method with regard to
these kinds of errors, constraints to the dynamic thresholding algorithm
were introduced in the form of minimum water and wetness probability
thresholds. Local thresholds that are lower than the specified minimum
are not considered for the calculation of the final global threshold that

Fig. 4. The wetness probability calculation involves three steps which successively increase the contrast between wet and dry areas: (a) Spectral indices sensitive to
wetness are linearly combined; (b) the result is transformed using a sigmoid function; (c) the contrast is further increased by weighting the result using the TWI.
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is applied to the whole image. Adjusting this parameter to the single
study sites reduces the number of falsely detected thresholds making
the derivation of the true threshold more reliable and robust.

2.3.6. Wetland classification
The frequencies for water and wetness over the whole observation

period are calculated separately based on the binary masks. Note here
that all water and wetness classes are mutually exclusive for each ob-
servation. Since the contrast between water and non-water is higher
than the contrast between wet and dry surfaces, water detection is
performed first. Pixels that have been classified as water in the first
step, are excluded from the subsequent wetness detection. The three
wetness classes are also mutually exclusive, since they are applied to
different areas based on the NDVI thresholds (see Section 2.3.4.1). In
this way, it is ensured that the water, wetness and dryness frequencies
sum to unity.

To avoid seasonal biases due to differences in cloud coverage during
the year, the frequencies were calculated separately, but using the same
formula

=
= =

f
s n

c1 1 ,ij
k

s

s t

n

ij
t

1 1

s

(7)

where fij is the overall water or wetness frequency for a pixel at location
ij, s is the number of seasons, ns is the number of valid observations for
pixel ij within season s, cij

t is the binary class value of the pixel ij at
observation t, where 0 represents non-water/non-wetness and 1 re-
presents water/wetness. Seasons were defined as three monthly per-
iods, therefore s was set to 4.

The Water Wetness Presence (or Probability) Index WWPI, as de-
fined by the EEA Copernicus Land Monitoring Service, gives an in-
dication of the occurrence of water and wetness within the investiga-
tion period. The WWPI ranges from 0 to 100% and is calculated using

= +water wet
n

WWPI 0.75 *100, (8)

where water is the number of water occurrences per pixel, wet is
the number of wetness occurrences per pixel and n the number of valid
observations per pixel. The classes water, wet and dry are mutually
exclusive meaning that a pixel can only belong to one class at a certain
point in time. Therefore, the WWPI ranges from 0 (always dry) to 100%

(always flooded). The weighting factor 0.75 was defined according to
Langanke et al. (2016), but was not empirically derived within this
study.

The main outcome of the proposed approach are water, wetness,
and dryness frequency maps as well as the WWPI. These layers indicate
where wetlands are likely to occur and thus serve as a pre-inventory.
Applying a rule-based classification, these layers can be translated into
wetland information, which has been done in the context of the
Copernicus HRL Water and Wetness Layer (Langanke et al., 2016).

2.3.7. Product validation
The validation of a multi-temporal product is challenging using

single-date reference data. Therefore, water and wetness masks derived
from two monthly composites of each site were validated to get an
estimation of the classification accuracy.

The accuracy assessment was implemented according to the good
practice recommendations of Olofsson et al. (2014). Stratified random
sampling was chosen as sampling design to create validation points
within the three strata water, wet and dry areas. The number of sample
points was not allocated purely proportionally to the size of the strata to
balance the precision of user's, producer's and overall accuracy
(Olofsson et al., 2014). The class with the largest area fraction (dry
areas) was assigned 350 sample points, for each of the classes water and
wet 100 sample points were assigned which resulted in a total of 550
samples per site and season. The validation was done blind, thus, the
validator had no information about the classification results. The re-
ference data for the validation included Google Earth Imagery, Open
Street Map data as well as the respective monthly image composite and
the derived NDWI and mNDWI images to get an indication of the cur-
rent water and wetness presence.

The accuracy of each monthly water and wetness classification is
describe using an error matrix and the derived accuracy parameters
overall, user's and producer's accuracy (Olofsson et al., 2014). The
sampling variability is quantified by the 95% confidence interval (CI).
In addition, the kappa coefficient of agreement was calculated for each
accuracy assessment (Congalton and Green, 2008).

3. Results

3.1. Feature selection analysis

3.1.1. Water
Initially, the mNDWI, NDWI, and NDVI were taken into considera-

tion for water detection, as these indices have already been proven
suitable for this purpose in previous studies (Li et al., 2013; Chen et al.,
2013; Rokni et al., 2014; Jiang et al., 2014; Tetteh and Schönert, 2015;
Donchyts et al., 2016). Different single and multi-index configurations
were tested. Using NDWI for water detection led to commission errors
within urban areas, while mNDWI tended to confuse wet soil and open
water in dry, sandy regions (Fig. 5). Adding the NDVI to one of these
water indices reduced detection rates over water bodies that contained
some form of vegetation. In the end, the combination of mNDWI and
NDWI yielded the most reliable and accurate results by combining the
advantages of both indices. The contrast between water and land is
increased and commission errors within urban areas are reduced. The
suitability of this index combination was also compared to other indices
using the feature selection analysis based on mutual information, but
none of the other index combination performed significantly better. In
addition, water probability calculation is very straight forward using
mNDWI and NDWI, since they are both NDIs which makes rescaling
unnecessary. The general applicability of this index combination also
proved to be very high, since the minimum water probability value was
kept at 50% for all study sites (Table 3).

3.1.2. Wetness
To identify suitable index combinations for wetness detection,

Fig. 5. At the bottom, image tile showing the water probability (scaled to
[0,100]). On top, the respective histogram with the falsely detected threshold
marked in red, if no minimum water probability threshold is set. In this case,
the true threshold separating water and land should be between 40 and 80%
water probability. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

C. Ludwig, et al. Remote Sensing of Environment 224 (2019) 333–351

341



feature selection analyses were performed separately for each study
site. The resulting feature rankings were analyzed jointly to find sui-
table index combinations that are applicable for wetness detection in a
generic manner within a broad range of bio-geographical regions. Three
different index combinations were identified that are sensitive to wet-
ness among different degrees of vegetation cover (Table 3).

The Normalized Difference Index between the NIR and SWIR2
bands (ND0812) is present in each of them, since it was ranked as a very
important index in all feature rankings and across all study sites. This
selection is plausible, since different combinations of NIR and SWIR
bands have been used for wetness detection in many previous studies
due to their sensitivity towards changes in soil moisture and plant water
content, e.g., SASI (Khannaa et al., 2007) and NDMI (Gao, 1996).

For wetness detection over bare soil, the ND0812 was supplemented
with the NDWI and ND0312. This index combination is mainly focused

on the detection of very wet or slightly inundated soils that were not
classified as open water due to the mixed pixel effect. These areas are
mainly found along narrow rivers, shorelines and shallow lakes and
marshes such as the Marais de la Mekhada in Algeria or the Sio River
(Fig. 6). The spectral profile of these land surfaces is very similar to
open water but less pronounced. Therefore, typical water indices such
as the NDWI and ND0312 are also suitable for wetness detection within
these land cover types. The minimum wetness probability value for this
index was mostly kept at 50%. For the study site in Algeria, it was
slightly increased by 5% to reduce the amount of commission errors
(Table 3).

The main challenge for the detection of wetness within densely
vegetated areas is to differentiate dry upland forests from forested
wetlands and peatlands such as the Oum Lâagareb wetland in Algeria.
The inclusion of the TWI in the calculation of wetness probabilities
eliminates most upland forests, but not entirely. Therefore, the separ-
ability between these two classes has to be enhanced by including
spectral indices that quantify differences in leaf water content. The
feature selection clearly showed that ABDI1 and ABDI2 are the most
suitable indices to achieve this, since they are sensitive to plant water
content and drought stress. The minimum probability values of this
class were generally set to a higher value than the others ranging be-
tween 60 and 65% to reduce commission errors within dry forests.

The identification of a suitable index combination for wetlands with
sparse vegetation was especially relevant for the Sio-Siteko Wetland,
since the other two index combinations were not sensitive towards the
central region of the wetland (Fig. 6). The feature selection analysis
identified the NMDI as the most important index which was then

Table 3
Spectral indices used for water and wetness detection and respective minimum
water and wetness probability values of each study site.

Class Indices Minimum probability [%]

Algeria Uganda Austria

Open water NDWI mNDWI 50 50 50
Bare soil ND0812 NDWI ND0312 55 50 50
Sparse vegetation ND0812 NDWI NMDI 55 45 50
Dense vegetation ND0812 ABDI1 ABDI2 60 60 65

Fig. 6. Sio-Siteko Wetland, Site A: Wetness frequencies over bare soil, sparse vegetation and dense vegetation derived using the spectral indices shown in Table 3. The
sum of these frequencies gives the overall wetness frequency.
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supplemented with ND0812 and NDWI. The spectral profile of wetlands
within this class is heterogeneous depending on the ratio between bare
soil and vegetation. Therefore, the applied minimum wetness prob-
ability value for this class varies slightly more within the study sites
than the other index combinations ranging between 45 and 55%. In
Uganda, it was set to a rather low value to reduce omission errors
within the central part of the wetland, while for the other sites it was set
to a higher value to keep commission errors low.

3.2. El-Kala Wetland System, Algeria

The accuracy assessment for the El-Kala Wetland System was per-
formed for February 2016 (Table 4) and June 2017 (Table 5). Both
show overall accuracies over 92 %. Water was more accurately mapped
reaching producer's and user's accuracy values exceeding 96% an 97%,
respectively. There is minor confusion between wet soil and water
within the Marais de la Mekhada due to the shallow water which makes
the distinction using visual interpretation difficult. Accuracy levels for
wetness reach producer's and user's accuracy of at least 76% and 89%,
respectively, with most misclassifications occurring within agricultural
fields.

The WWPI gives a good representation of the spatial distribution of
water and wetness in the area around the El-Kala Wetland System
(Fig. 7). The floodplain including the Marais de la Mekhada as well as
Lake Oubeira and Lake Tonga in the East show high WWPI values,
while the surrounding upland areas are permanently dry. Several
agricultural fields which are partly irrigated during the growing season
are scattered throughout the valleys showing medium high WWPI va-
lues. Urban areas are reliably classified as dry showing very few com-
mission errors. Minor commission errors only occur within the dry
forest near the shore. Permanent water bodies and the ocean have been

delineated accurately showing no omission errors. Especially the
smaller water reservoirs have been mapped with high reliability.

The seasonal wetness frequencies over dense vegetation reflect the
seasonal presence of agriculture in the floodplain and the forested
swamps of Oum Lâagareb (Fig. 8). During the growing season in winter
and spring the flood plain shows high wetness frequencies due to irri-
gation of agricultural areas. In summer, the flood plain is dry and no
longer vegetated. Only the forested swamps of Oum Lâagareb in the
North West appear as wet. During fall, moisture levels seem to drop in
this area as well.

Due to the dry summers and rainy winters, water and wetness oc-
currence are considerably reduced in summer (Fig. 9). The water within
the Marais de la Mekhada recedes, but the marsh stays moist while the
surrounding area is dry. In winter, the marsh is flooded reaching its
maximum water extent and the whole flood plain shows generally high
moisture levels due to agricultural activity. This corresponds to the
seasonal distribution of precipitation, since rainfall mainly occurs in
winter and agricultural fields within the flood plain are irrigated during
the growing season in winter and spring.

Lake Tonga shows a similar pattern (Fig. 10). During winter, the
water level is highest and most of the surface is flooded. In summer, the
water level drops, but the vegetation covering the lake seems to retain
some level of moisture throughout the whole year. The agricultural
fields in the south-east of the lake also show the typical seasonal dy-
namics with high wetness occurrence in winter and dryness in summer.

3.3. Sio-Siteko Wetland, Uganda/Kenya

For the Sio-Siteko wetland, the water and wetness extents for
August (Table 6) and December 2016 (Table 7) were validated. Overall
accuracies are high with values of 92% and 95%, and kappa coefficients
of 0.87 and 0.85. Water was detected very well with both user's and
producer's accuracy reaching 100%. User's accuracy of wetness in April
only reaches 65% with most commission errors located within agri-
cultural fields. In December, the user's accuracy reaches 86%. Produ-
cer's accuracy is satisfying in both months reaching more than 86%. The
omission errors are mostly found at the edges of the wetlands or within
small wetland patches.

The WWPI delineates Lake Victoria and the branches of the wetland
system accurately (Fig. 11). The wetland shows constantly high WWPI
values which seems plausible given the tropical climate. Agricultural
areas that are located along the edges of the wetland branches are also
visible with medium WWPI values.

The water level of Lake Victoria does not vary considerably during
the year, which can be seen by constantly high WWPI values. The Sio
river that flows through the Sio-Siteko main wetland (Fig. 11A) was not
classified as water, since in most parts the width is smaller than the
20m spatial resolution of the imagery. The importance of using dif-
ferent spectral indices for different degrees of vegetation cover can be
seen very clearly in the Sio-Siteko main wetland branch (Fig. 6). The
densely vegetated swamps in the northern and southern part of the
wetland are well captured by the drought indices ABDI and the ND0812.
The central part of the wetland is generally less vegetated, which makes
the drought indices less suitable for wetness detection. The NMDI, on
the other hand, is very sensitive towards wetness in this area, yielding
high wetness frequency values in the sparse vegetation map. The wet-
ness frequency over bare soil mainly captures less vegetated areas that
are sightly flooded or rivers that are too narrow to be classified as water
such as the Sio river.

The Nzoia River and its flood plain south of Sio-Siteko shows sea-
sonal water level changes (Fig. 12). While the river permanently con-
tains water, cut-off meanders and rice paddies within the floodplain are
only seasonally flooded. Some segments of the river show reduced
water frequency values, which are often due to omission errors caused
by turbid water, vegetation cover or narrow river width. These areas
are captured by the bare soil wetness detection. The presence of

Table 4
Accuracy assessment for El-Kala Wetland System in February 2016.

Classification Reference Total User's acc. 95% CI

Dry Water Wet

Dry 325 0 25 350 92.86 1.45
Water 0 97 3 100 97.00 1.73
Wet 10 1 89 100 89.00 3.46
Total 335 98 117 550
Prod.’s acc. [%] 97.01 98.98 76.07
95% CI 0.94 1.01 5.10

Overall acc. 92.91%
Overall 95% CI 1.16
Kappa 0.87

Table 5
Accuracy assessment for the El-Kala Wetland System in June 2017.

Classification Reference Total User's acc. [%] 95% CI

Dry Water Wet

Dry 339 0 10 349 97.13 0.90
Water 0 99 0 99 100.00 0.00
Wet 1 4 95 100 95.00 2.26
Total 340 103 105 548
Prod.’s acc. [%] 99.71 96.12 90.48
95% CI 0.29 1.95 3.12

Overall acc. 97.26%
Overall 95% CI 0.70
Kappa 0.95
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wetness also seems plausible with the rice paddies and swamps being
frequently wet while the upland regions and the urban settlements are
classified as mostly dry.

3.4. Lake Neudsiedl, Austria

The water and wetness classification for April 2016 (Table 8) and
August 2016 (Table 9) were validated. The accuracy assessment yields
overall accuracies in both cases of 93% and 92%, respectively. Water
was detected very accurately in both months. For wetness, producer's
accuracy reaches values of at least 86%. Due to omission errors on the
edges of the reed belt of Lake Neusiedl, the producer's accuracy is

decreased.
The WWPI shows high values throughout Lake Neusiedl and its

surrounding marsh land (Fig. 13). The area east of the lake is ex-
tensively farmed and irrigated at times, which explains the increased
WWPI outside of the wetland. The surrounding upland forests and
urban settlements are mostly classified as dry showing only minor
commission errors.

The changing water level of Lake Neusiedl and its surrounding
marsh land are well captured in the annual water frequency map
(Fig. 14c). While the water level of the lake remains relatively constant
throughout the year, the smaller lakes in the surrounding area show
strong fluctuations. Some of these lakes even disappear completely

Fig. 7. El-Kala Wetlands: WWPI (Jan 2016–June 2017). Site A is the Marais de la Mekhada, a freshwater marsh in the Mafragh plain and site B is Lake Tonga.

Fig. 8. El-Kala Wetlands, Site A: Seasonal wetness frequency for dense vegetation (Jan 2016–June 2017). White areas represent no data.
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during the summer months. The seasonal wetness frequency also re-
flects the changing moisture level of the reed belt surrounding the lake.
The highest wetness frequencies are reached during the rainy winter
months, while areas around the edges of the marsh dry out considerably
during the summer (Fig. 14b,c). Large parts of the area around Lake
Neusiedl are used for agricultural purposes, which is why these fields
temporarily show high wetness frequencies. Some forested patches
within the agriculturally used south-eastern part of the site show wet-
ness frequency value of up to 60% which probably constitute errors of
commission, but might also be due to a high plant water content.

4. Discussion and conclusion

The aim of this study was to investigate whether wetland mapping
can be performed in large areas and across different bio-geographic
regions in a highly automated way and without the need for extensive
training data. For this purpose, a method based on tile-based image
thresholding to semi-automatically map water and wetness using multi-
temporal optical satellite imagery was developed and evaluated.
Feature selection analyses were performed using the mutual informa-
tion criterion to find combinations of spectral indices that are suitable

Fig. 9. El-Kala Wetlands, Site A, Marais de la Mekhada: Water and wetness frequency and WWPI for summer and winter (Jan 2016–June 2017).

Fig. 10. El-Kala Wetlands, Site B, Lake Tonga: Water and wetness frequency and WWPI for summer and winter (Jan 2016–June 2017).
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for water and wetness detection in different bio-geographical regions.
The method was applied to three study sites covering different climatic
regions to evaluate its performance and degree of general applicability.

The results prove that tile-based image thresholding is an effective
and fast method to map water and wetness in an mostly automatic way.
The validation of selected monthly water and wetness extents yielded
satisfying results reaching overall accuracies of at least 92% for all test
sites. Moreover, plausibility checks using climate data and site de-
scriptions by Ramsar indicate that the derived classifications seem to
convey a plausible representation of water and wetness occurrence
throughout the year. Comparisons of the annual water frequencies de-
rived for the three study sites to the Global Surface Water data set by
Pekel et al. (2016) revealed good concordance, which supports the
plausibility and accuracy of the classification. In the case of Lake Tonga,
both classifications exhibit the same patterns, but the classification
derived in this study results in generally higher water frequencies
within the lake (Fig. 15). This seems to be plausible, since the lake is
permanently flooded and partly covered by floating vegetation
(Fig. 15). For the whole study site in Algeria, the mean difference be-
tween the two water frequencies was 0.2% with a standard deviation of
7.0%. However, the significance of this comparison is limited due to the
differences of the satellite sensors, investigation periods and temporal
resolution for both products which may account for some of the de-
viations between the two classification results. Considering wetness,
there is no such reference available, which is why plausibility was
tested using climate data. Those comparisons, however, indicated that
the changing extents of wet surfaces generally corresponded to the
annual rainfall distribution for both study sites.

Open water was very accurately mapped with user's and producer's
accuracies exceeding 96% for all test sites. Limitations arise in narrow
streams with turbid water or dense vegetation cover, because mixed
pixels complicate water detection. Fusing the optical-based water
masks with water masks derived from Sentinel-1 improves detection

Table 6
Accuracy assessment for Sio-Siteko Wetland in August 2016.

Classification Reference Total User's acc. 95% CI

Dry Water Wet

Dry 341 0 8 349 97.71 0.80
Water 0 100 0 100 100.00 0.00
Wet 35 0 65 100 65.00 7.23
Total 376 100 73 549
Prod.’s acc. [%] 90.69 100.00 89.04
95% CI 1.62 0.00 4.05

Overall acc. 92.17%
Overall 95% CI 1.22
Kappa 0.85

Table 7
Accuracy assessment for Sio-Siteko Wetland in December 2016.

Classification Reference Total User's acc. 95% CI

Dry Water Wet

Dry 337 0 13 350 96.29 1.03
Water 0 100 0 100 100.00 0.00
Wet 13 0 85 98 86.73 3.89
Total 350 100 98 548
Prod.’s acc. [%] 96.29 100.00 86.73
95% CI

Overall acc. 95.26%
Overall 95% CI 0.94
Kappa 0.91

Fig. 11. Sio-Siteko Wetland: WWPI (Jan 2016–June 2017). Site A is the Sio-Siteko Wetland and Site B is the Nzoia River.
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accuracy in these cases. Pan-sharpening of the SWIR1 band to derive
water extents at 10 meter spatial resolution similar to Du et al. (2016)
might be another possibility if Sentinel-1 data is not available. Water

bodies that are covered by floating vegetation represented another
issue. These cannot be detected using optical imagery alone, since the
vegetation layer strongly alters the spectral profile of the underlying
water. Incorporating Sentinel-1 or radar imagery with longer wave-
length such as L-band or additional ancillary data might alleviate this
issue (Costa et al., 2002), but requires further investigation.

Wetness was mapped less accurately than water which is due to
different reasons. First, wetlands in general have less pronounced
boundaries than water bodies, since there is usually a transition zone
between a wetland and its drier surroundings instead of a clear
boundary as it is the case for water bodies. Therefore, most omission
errors occur along the edges of wetlands. An unambiguous assignment
of class labels for validation points within these areas is therefore not
always possible leading to the majority of omission and commission
errors in the validation results. Still, user's and producer's accuracies
reach values of above 75% in most cases.

One general issue when mapping wetland areas is that no unique,
scientific definition of wetlands does exist (cf. Tiner, 2016). Thus, while
some definitions include agricultural areas as wetlands, others do not.
With the underlying approach we present a methodology to con-
sistently detect the occurrence of open water and wet soils (wetness)
serving as a pre-inventory of wetlands and building the foundation for a
final wetland classification according to the user definition and needs.
For the Copernicus Pan-European HRL 2015 on Water and Wetness, this
information was directly transferred into the final classification ap-
plying a set of rules (Langanke et al., 2016). However, the method is not
considered to apply a detailed nomenclature as for instance the Ramsar
nomenclature. This requires to incorporate additional information on
land cover and use. The WWPI can serve as a starting point to identify
and delineate areas prone to wetlands (pre-inventory) and then to apply
a more detailed land cover nomenclature (e.g., Ramsar definition;
Tiner, 2016) to these areas. Irrespective of the various existing wetland
definitions and nomenclatures, tracking long-term changes of the
WWPI will allow to detect changes in the occurrence of water and wet
soils in a subjective manner and independent of any definitions.

Legitimate misclassifications occasionally occur within low lying
forests, very densely vegetated wetlands and peatlands. Wetness among

Fig. 12. Sio-Siteko Wetland, Site B, Nzoia River: Water and wetness frequency of the Nzoia River.

Table 8
Accuracy assessment for Lake Neudsiedl in April 2016.

Classification Reference Total User's acc. 95% CI

Dry Water Wet

Dry 323 0 25 348 92.82 1.46
Water 0 100 0 100 100.00 0.00
Wet 11 2 87 100 87.00 3.81
Total 334 102 112 548
Prod.’s acc. [%] 96.71 98.04 77.68
95% CI 0.99 1.38 4.99

Overall acc. 93.07%
Overall 95% CI 1.14
Kappa 0.87

Table 9
Accuracy assessment for Lake Neudsiedl in August 2016.

Classification Reference Total User's acc. 95% CI

Dry Water Wet

Dry 316 0 30 346 91.33 1.63
Water 0 98 0 98 100.00 0.00
Wet 13 0 85 98 86.73 3.89
Total 329 98 115 542
Prod.’s acc. [%] 96.05 100.00 73.91
95% CI 1.10 0.00 5.45

Overall acc. 92.07%
Overall 95% CI 1.24
Kappa 0.85
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peatlands is often only present at greater soil depth and only detectable
right after the thawing period in spring or summer in the case of
northern latitudes. As a result, contrast between the wetness of the
peatland and the surrounding dry area is less pronounced reducing the
capability of the algorithm to accurately delineate the wetland using
optical imagery alone. In addition, the TWI cannot be applied in the
case of peatlands, since their occurrence is not so much determined by
topography. In this regard, further studies into the robustness and ac-
curacy of the method for peatland mapping need to be conducted.

One possible way to increase detection rates especially for non-
forested peatlands is the inclusion of soil moisture information derived
from SAR imagery. First attempts in incorporating water and wetness
information derived from both optical and SAR imagery, have been
performed with promising results within the Copernicus Pan-European
High Resolution Layer 2015 and the ESA project GlobWetland Africa
(Langanke et al., 2016). However, further research needs be done re-
garding the fusion of optical and SAR based water and wetness in-
formation that also considers the sensor-specific classification quality

Fig. 13. Lake Neusiedl: WWPI (Jan 2016 - June 2017).

Fig. 14. Lake Neusiedl: Overall water frequency (a), and seasonal wetness frequency during summer (b) and winter (c).
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issues. Besides, it is also important to investigate the influence of the
temporal resolution of the input imagery on the quality of the classi-
fication product.

Comparisons to other classification approaches that have been used
for water and wetness detection show that tile-based image thresh-
olding has considerable advantages. Classification accuracies might be
slightly lower compared to supervised classification methods, however,
with regard to processing time and power, the proposed method re-
quires far less resources and is considerably faster. Another advantage
compared to supervised classification methods is that this method does
not require any training data for calibration. Instead, only a few para-
meters of the thresholding algorithm have to be evaluated and adapted
in a parameter study based on a small, representative subset after which
the method can be applied in a fully automated manner to a larger
region. Since the algorithm can also be applied to other high resolution
data such as Landsat imagery, historic analyses of long-term trends can
be performed with reasonable computational and human effort.

The classification results show that the proposed method is suitable
for the detection of water and wetness in different climatic regions
using multi-temporal optical imagery. Water was mapped with very
high accuracy (> 96%) and in a fully automatic way, since no manual
adaptation of the classification parameters was required. For wet sur-
faces, minor adaptations of the classification parameters were necessary
for each site. The validation yielded satisfying accuracy values and the
final classification results convey a plausible representations of the
annual water and wetness dynamics within the study sites. Considering
the relation between classification quality and computational effort, the
method can be seen as a first step towards the implementation of a
large-scale water and wetness mapping (pre-inventory of wetlands) and
monitoring service that is applicable across different bio-geographical
regions.

List of abbreviations

ABDI1 Angle Based Drought Index 1
ABDI2 Angle Based Drought Index 2
ABDI Angle Based Drought Index
ANIR Angle at Near Infrared
AOI Area of Interest
AWEI Automated Water Extraction Index
AWS Amazon Web Service
CDF Cumulative Distribution Function
CI Confidence Interval
DEM Digital Elevation Model
DVW Difference Vegetation Water
EEA European Environmental Agency
ESA European Space Agency

FCC False Color Composite
Fmask Function of mask
GDAL Geospatial Data Abstraction Library
GLWD Global Lakes and Wetlands Database
HAND Height Above Nearest Drainage
HOT Haze Optimized Transformation
HRL High Resolution Layers
HSV Hue-Saturation-Value
iMAD iterative reweighted Multivariate Alteration Detection
ISODATA Iterative Self-Organizing Data Analysis Technique
LASSO Least Absolute Shrinkage and Selection Operator
LSWI Land Surface Water Index
mNDWI modified Normalized Difference Water Index
MIFW Modified Index of Free Water
MODIS Moderate-resolution imaging spectroradiometer
MSI MultiSpectral Instrument
MWII Modified Water Impoundment Index
MWI Modified Water Index
NDBI Normalized Difference Build-up Index
NDI Normalized Difference Index
ND0812 Normalized Difference Index NIR-SWIR2
NDI Normalized Difference Indices
NDMI Normalized Difference Moisture Index
NIR near infrared
NMDI Normalized Multi-band Drought Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
OLI Operational Land Imager
RAM Random Access Memory
RED red spectral band
RGB Red-Green-Blue (color model)
RMSE Root Mean Square Error
SAGA GISSystem for Automated Geoscientific Analyses
SAR Synthetic Aperture Radar
SASI Shortwave Angle Slope Index
SRTM Shuttle Radar Topography Mission
SWIR shortwave infrared
SWIR1 shortwave infrared 1
SWIR2 shortwave infrared 2
TCBI Tasselled Cap Brightness Index
TCGI Tasselled Cap Greenness Index
TCWI Tasselled Cap Wetness Index
TM Thematic Mapper
TOA Top-Of-Atmosphere
TWI Topographic Wetness Index
WWF World Wildlife Fund
WWPI Water Wetness Presence (or Probability) Index

Fig. 15. The three images show Lake Tonga, a permanently flooded lake mostly covered by floating vegetation. a) Water frequency calculated in this study based on
Sentinel-2 imagery from the years 2016/2017; b) seasonality of Pekel et al. (2016) based on Landsat imagery for the years 2014/2015 (converted to a water
frequency scale [0,100]); c) difference in water frequency between the two classifications.
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